Annexes to the 2022 WHO Hepatitis A Vaccine Position Paper

Grading of evidence -Evidence to recommendations tables

Background

Annexes 1–12 contain tables that summarize the grading of recommendations, assessment, development and evaluations (GRADE). Annexes 13–14 contain the SAGE evidence-to-recommendation framework tables (ETR tables). The ETR tables are based on the DECIDE Work Package 5: Strategies for communicating evidence to inform decisions about health system and public health interventions. Evidence to a recommendation (for use by a guideline panel) (<u>www.decide-collaboration.eu/</u>, accessed 11 January 2021).

Contents

Annex 1. GRADE table: Efficacy and safety of hepatitis A vaccines: Two doses of inactivated hepatitis A vaccine (2012 systematic review)	>
Annex 2. GRADE table: Efficacy and safety of hepatitis A vaccines. Single dose inactivated hepatitis A	
vaccine. (2012 systematic review).	ŧ
Annex 3. GRADE table: Hepatitis A vaccine and post-exposure prophylaxis. Inactivated hepatitis A vaccine	
versus no intervention. (2012 systematic review).	
Annex 4. GRADE table: Hepatitis A vaccine and post-exposure prophylaxis. Inactivated hepatitis A vaccine	
versus Ig. (2012 systematic review)	
Annex 5. GRADE table: Hepatitis A vaccine long term protection: Inactivated 2 doses vs no vaccination	
(2012 systematic review))
Annex 6. GRADE table: Efficacy and safety of hepatitis A vaccines. Live attenuated hepatitis A vaccine.	
2012 (2012 systematic review))
Annex 7. GRADE table: Hepatitis A vaccine long term protection: Live attenuated single-dose vs no	
vaccination (2012 systematic review)	ŝ
Annex 8. GRADE table: Hepatitis A vaccine long term protection: Inactivated 1 vs 2/multiple doses. (3-7	
years of follow up) (2021 systematic review) 17	
Annex 9. GRADE table: Hepatitis A vaccine long term protection: Inactivated 1 vs 2/multiple doses. (above	
7 years of follow up) (2021 systematic review) 20)
Annex 10. GRADE table: Hepatitis A vaccine long term protection: Live attenuated single-dose vs	
2/multiple doses of inactivated vaccine (3-7 years of follow up) (2021 systematic review) 23	3
Annex 11. GRADE table: Hepatitis A vaccine long term protection: Live attenuated single-dose vs	
2/multiple doses of inactivated vaccine (above 7 years of follow up) 26	5
Annex 12. SAGE evidence-to-recommendation framework: Should hepatitis A vaccination two doses	
inactivated vs no intervention, inactive control or placebo be used to prevent hepatitis A disease?)
Annex 13. SAGE evidence-to-recommendation framework: Should single dose hepatitis A vaccination	
(inactivated or live-attenuated) vs two doses inactivated be used to prevent hepatitis A disease?	ŝ

Annex 1. GRADE table: Efficacy and safety of hepatitis A vaccines: Two doses of inactivated hepatitis A vaccine (2012 systematic review)

Author(s): Wiersma S, Irving G, Ott J, Holden J

Date of review: 29 June 2011

- **Population:** General population (children and adults)
- **Intervention:** Two doses of inactivated hepatitis A vaccine
- **Comparison:** no intervention, inactive control or placebo
- **Outcomes:** Clinical and laboratory confirmed Hep A disease.
 - Serious adverse events following immunization

Question: Should inactivated hepatitis A vaccine vs no intervention, inactive control or placebo be used for hepatitis A?

			Quality asse	essment		No of p	atients	Eff	ect			
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Inactivated hepatitis A vaccine	No intervention, inactive control or placebo	Relative	Absolute	Quality	
Hepatitis A (follow-up 12-18 months; assessed with: clinical and laboratory criteria)												
4				no serious indirectness	no serious imprecision	very strong association ^a	10/19820 (0.05%)	95/19906 (0.48%) 0%	RR 0.12 (0.05 to 0.31)	-	⊕⊕⊕⊕ HIGH	
Absence	of serious adv	erse effects (f	ollow-up 12-18 mc	onths; assessed	with: clinical o	bservation)			-	-	-	
4				no serious indirectness	no serious imprecision	very strong association ^b	0/19820 (0%)	0/19906 (0%) 0%	-	-	⊕⊕⊕⊕ HIGH	

a. A large effect, RR=0.12, was found.

b. Innis 1994 reported that no hospitalizations or deaths were attributed to vaccination but did not provide full breakdown of reporting according to ICH GCP 199

lary of gs	Statement on quality of evidence	Evidence supports a high degree of confidence that the true effect lies close to that of the estimate of effect on health outcome.
Summ Findin	Conclusion	High scientific evidence that two doses of inactivated hepatitis A vaccine are safe and efficacious to prevent hepatitis A disease.

- 1. Innis B, Snitbhan R, et al. Protection against hepatitis A by an inactivated vaccine. Journal of the American Medical Association 1994;271(17):1328-1334.
- 2. Pérez M, Herzog C. 2003;188(5):671-677. Efficacy of virosome hepatitis A vaccine in young children in Nicaragua: randomized placebo-controlled trial. The Journal of Infectious Diseases 2003;188(5):671-677.
- 3. Riedemann S, Reinhardt G. Placebo-controlled efficacy study of hepatitis A vaccine in Valdivia, Chile. Vaccine 1992;10:S152-155.
- 4. Werzberger A, Mensch B. A controlled trial of a formalin-inactivated hepatitis A vaccine in healthy children. New England Journal of Medicine 1992;327(7):453-457.

Note: this is the systematic review that has been carried out for the 2012 WHO position paper. The summary of findings table has been added for clarity.

Annex 2. GRADE table: Efficacy and safety of hepatitis A vaccines. Single dose inactivated hepatitis A vaccine. (2012 systematic review).

Author(s): Wiersma S, Irving G, Ott J, Holden J Date: 29 June 2011

Population:	General population (children and adults)
Intervention:	One dose of inactivated hepatitis A vaccine
Comparison:	no intervention, inactive control or placebo

Outcomes: Clinical and laboratory confirmed Hep A disease. Serious adverse events following immunization

Question: Should single dose inactivated hepatitis A vaccine versus no intervention, inactive control or placebo be used for hepatitis A?

			Quality as	sessment		No of patients Effect					
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations		No intervention, inactive control or placebo	Relative	Absolute	Quality
Hepatitis	A (follow-up m	nean 15 m	onths; assessed v	with: clinical and	l laboratory crit	eria)					
1	randomised	no serious	no serious	no serious	no serious	very strong	0/136 (0%)	(12.5%)	RR 0.03 (0 to		⊕⊕⊕⊕
ľ		risk of inconsistency bias	inconsistency	indirectness	imprecision	association		0%	0.47) -	HIGH	

a. Virosomal inactivated hepatitis A vaccine.

ary of gs	Statement on quality of evidence	Evidence supports a high degree of confidence that the true effect lies close to that of the estimate of effect on health outcome.
Summ Findin	Conclusion	High scientific evidence that single dose inactivated hepatitis A vaccine are safe and efficacious to prevent hepatitis A disease.

1. Perez M, Herzog Z. Efficacy of virosome hepatitis A vaccine in young children in Nicaragua: randomized placebo-controlled trial. Int J Infect Diseases 2003; 188: 671-7.

Note: this is the systematic review that has been carried out for the 2012 WHO position paper. The summary of findings table has been added for clarity.

Annex 3. GRADE table: Hepatitis A vaccine and post-exposure prophylaxis. Inactivated hepatitis A vaccine versus no intervention. (2012 systematic review).

Author(s): Wiersma S, Irving G, Ott J, Holden J Date: 29 June 2011

- **Population:** General population (children and adults)
- Intervention: One or two dose of inactivated hepatitis A vaccine

Comparison: no intervention, inactive control or placebo

Outcomes: Clinical and laboratory confirmed Hep A disease. Serious adverse events following immunization

Question: Should use of inactivated hepatitis A vaccine in family contacts of confirmed cases versus no intervention be used for hepatitis A prevention?

			Quality as	sessment			No of pa	atients	E	Effect	
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Use of inactivated hepatitis A vaccine in family contacts of confirmed cases	No intervention	Relative (95% CI)	Absolute	Quality
No of studies Design Risk of bias Inconsistency Indirectness Imprecision Other considerations Other considerations Indirectness Quality Hepatitis A (follow-up mean 45 days; assessed with: clinical and laboratory criteria) Imprecision Other considerations No Relative (95% CI) Absolute Quality 1 randomized Serious ^a no serious no serious no serious none 2/197 12/207 RR 0.18 79% Imprecision											
1						none					⊕⊕⊕⊖ MODERATE

เกลเ	inconsistency	indirectness	Imprecision	(1%)	(5.6%)	(0.04 to	enicacious	MODERATE
						0.77)	compared to	
						,	no	
							intervention.	

a. Sequence generation was unclear, allocation concealment was inadequate, blinding was unclear, and incomplete outcome data was reported.

mmary of dings	Statement on quality of evidence	Evidence supports a moderate degree of confidence that the true effect lies close to that of the estimate of effect on health outcome.
Sumn Findir	Conclusion	Moderate scientific evidence that inactivated hepatitis A vaccine in family contacts of confirmed cases prevent disease.

1. Sagliocca L, Amoroso P, Stroffolini T, Adamo B, Tosti ME, Lettieri G, Esposito C, Buonocore S, Pierri P, Mele A. Efficacy of hepatitis A vaccine in prevention of secondary hepatitis A infection: a randomised trial. Lancet 1999; 353:1136-9.

Note: this is the systematic review that has been carried out for the 2012 WHO position paper. The summary of findings table has been added for clarity.

Annex 4. GRADE table: Hepatitis A vaccine and post-exposure prophylaxis. Inactivated hepatitis A vaccine versus Ig. (2012 systematic review).

Population:	General population (children and adults)
Intervention:	One or two dose of inactivated hepatitis A vaccine
Comparison:	Immunoglobulins (Ig)
Outcomes:	Clinical and laboratory confirmed Hep A disease.
	Serious adverse events following immunization

Question: Should use of inactivated hepatitis A vaccine in contacts of confirmed cases versus immunoglobulins (IG) be used for post-exposure prevention of hepatitis A?

Author(s): Wiersma S, Irving G, Ott J, Holden J Date: 29 June 2011

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Use of inactivated hepatitis A vaccine in contacts of confirmed cases	lmmuno- globulins (IG)	Relative (95% CI)	Absolute	Quality		
Hepatitis /	No of studies Design Risk of bias Inconsistency Indirectness Imprecision Other considerations Other considerations (IG) Relative (95% CI) Absolute Quality												

1 randor trial	ized no serious risk of bias		indiractaoss	no serious imprecision ^a	none	25/568 (4.4%)	17/522 (3.3%)	RR 1.35 (0.7 to 2.67)	NOTE ^b	⊕⊕⊕⊕ HIGH
-------------------	---------------------------------------	--	--------------	--	------	------------------	------------------	-----------------------------	-------------------	--------------

RR= Relative Risk (95% CI)

- a. Criterion of noninferiority met; no significant differences between IG and inactivated hepatitis A vaccine in clinical or subclinical hepatitis A. Risk of hepatitis in vaccine group never >1.5% than in IG group.
- b. Absolute vaccine efficacy not assessed.

ımary of lings	Statement on quality of evidence	Evidence supports a high degree of confidence that the true effect lies close to that of the estimate of effect on health outcome.
Sumn Findir	Conclusion	High scientific evidence that inactivated hepatitis A vaccine in family contacts of confirmed cases are as efficacious as immunoglobulins to prevent hepatitis A disease.

1. Victor JC, Monto AS, Surdina TY, Suleimenova SZ, Vaughan G, Nainan OV, Favorov MO, Margolis HS, Bell BP. Hepatitis A vaccine versus immune globulin for postexposure prophylaxis. N Engl J Med 2007; 357:1685-94.

Note: this is the systematic review that has been carried out for the 2012 WHO position paper. The summary of findings table has been added for clarity

Annex 5. GRADE table: Hepatitis A vaccine long term protection: Inactivated 2 or more doses vs no vaccination (2012 systematic review)

Author(s): Ott J, Wiersma S Date: 28 September 2011

Population:	Children and adults
Intervention:	Two or three doses of inactivated Hep A vaccine
Comparison:	No HAV vaccination
Outcome:	Seroprotection rate, Anti HAV Ab geometric median concentration at 5-14 years of vaccination

Question: Should inactivated hepatitis A vaccine be used for long-term protection against hepatitis A?

Note: this systematic review has been published in a peer review journal: Ott JJ, Irving G, Wiersma ST. Long-term protective effects of hepatitis A vaccines. A systematic review. Vaccine. 2012 Dec 17;31(1):3-11. doi: 10.1016/j.vaccine.2012.04.104.

	Quality assessment							No of patients		Effect		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Inactivated hepatitis A vaccine	Control	Relative (95% CI)	Absolut ^c e	Quality	
Anti-HA	/ antibodies >5 y	vears after i	mmunization (foll	ow-up 5-14 yea	rs; measured v	vith: GMC, GMT, o	r % seroprote	ction pos	t vaccinat	ion)		
	observational studies	Serious ^a	inconsistency	no serious indirectness	Serious ^b	none	720	-	-	GMT range from 62- 1587 ²	⊕○○○ VERY LOW	
Anti-HA	V antibodies 14 y	vears after i	mmunization (chi	Idren, 3-dose, I	Havrix) (follow-	up mean 14 years						
1	observational studies	no serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	56	-	-	GMT range from 131- 227 ^e	⊕⊕⊖⊖ Low	

a. Loss to follow-up reported to be up to 50% and increased with duration of follow-up. There is also a risk of confounding because other factors potentially associated with antibody response are not considered.

b. Results had wide ranges and wide confidence intervals and often only reported GMC/GMT and not ranges of data.

- c. Results listed as mean geometric titer or concentration.
- d. Three different schedules were used (0, 1, 2 mo; 0, 1, 6 mo; 0, 1, 12 mo) in this study.
- e. Seroprotection rate ranged from 86-100% depending on schedule.

ary of gs	Statement on quality of evidence	Evidence supports a very low degree of confidence that the true effect lies close to that of the estimate of effect on health outcome.
Summary	Conclusion	Very low scientific evidence that multiple dose schedules of inactivated hepatitis A vaccine provide long term seroprotection against Hepatitis A.

- 1. Bian GL, Ma R, Dong HJ, Ni HX, Hu FJ, Chen YR, Chen JQ, Zhou SY, Lin YX, Xu GZ. Long-term clinical observation of the immunogenicity of inactivated hepatitis A vaccine in children. Vaccine 2010; 28; 4798-801.
- 2. Bovier PA, Farinelli T, Loutan L. Interchangeability and tolerability of a virosomal and an aluminum-adsorbed hepatitis A vaccine. Vaccine 2005; 23: 2424-9.
- 3. Bovier PA, Bock J, Ebengo TF, Grösner G, Glaus J, Herzog C, Loutan L. Predicted 30-year protection after vaccination with an aluminum-free virosomal hepatitis A vaccine. J Med Virol 2010; 82: 1629-34.
- 4. Byrd KK, Bruden DL, Bruce MG, Bulkow LR, Zanis CL, Snowball MM, Homan CE, Hennessy TW, Williams JL, Dunaway E, Chaves SS, McMahon BJ. Long-term immunogenicity of inactivated hepatitis A vaccine: Follow-up at 15 years. Journal of Pediatric Infections Diseases 2010; 5: 321-26.
- 5. Crum-Cianflone NF, Wilkins K, Lee AW et al. Long-term durability of immune responses after hepatitis A vaccination among HIV- infected adults. J Inf Dis 2011; 203: 1815-23
- 6. Lopez EL, Contrini MM, Mistchenko A, Debbag R. Long-term immunity after two doses of inactivated hepatitis A vaccine, in Argentinean children. Pediatr Infect Dis J 2010; 29:568-70
- 7. Van Herck K, Van Damme P. Inactivated hepatitis A vaccine-induced antibodies: follow-up and estimates of long-term persistence. J Med Virol 2001;63:1-7.

Note: this is the systematic review that has been carried out for the 2012 WHO position paper. The summary of findings table has been added for clarity

Annex 6. GRADE table: Efficacy and safety of hepatitis A vaccines. Live attenuated hepatitis A vaccine. 2012 (2012 systematic review).

Author(s): Wiersma S, Irving G, Ott J, Holden J Date: 29 June 2011

- **Population:** General population (children and adults)
- **Intervention:** One dose of live attenuated hepatitis A vaccine
- **Comparison:** no intervention, inactive control or placebo
- Outcomes: Clinical and laboratory confirmed Hep A disease. Serious adverse events following immunization

Question: Should single dose live attenuated hepatitis A vaccine vs no intervention, inactive control or placebo be used for hepatitis A?

	Quality assessment							atients	Eff			
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations		No intervention, inactive control or placebo	Relative	Absolute	Quality	
Hepatitis	A (follow-up 1	-60 month	s; assessed with:	clinical and labo	oratory criteria)							
13	randomised trials	Serious ^a				63/864813 (0.007%)	723/799585 (0.09%)	RR 0.09 (0.04 to		⊕⊕⊖⊖ LOW		
								0%	0.17)	-		

- a. None of the studies had a low risk of bias when considering adequate sequence generation, allocation concealment, blinding, incomplete accounting of patients and outcome events. All studies reported on expected outcomes.
- b. I squared equals 80%.
- c. RR was 0.09 with over 1.6 million participants.

lary of gs	Statement on quality of evidence	Evidence supports a low degree of confidence that the true effect lies close to that of the estimate of effect on health outcome.
Summary Findings	Conclusion	Low scientific evidence that single dose of live attenuated hepatitis A vaccines are safe and efficacious to prevent hepatitis A disease.

- 1. Gong J, Li R, Yang J. Protective efficacy of large scale immunization with a live attenuated hepatitis A vaccine (LA-1 strain. Guangxi Journal of Preventative Medicine 2000;6(5):257-259.
- 2. Jiang S, Huang J, Chen J. The epidemiological Efficacy Assessment of Attenuated Live Hepatitis A Vaccine in Masses in Liuzhou.. Chinese Journal of Epidemiology 1995;16(3):140-142.
- 3. Jiang W, Niu X. Observation on the efficacy of attenuated live Hepatitis A Vaccine's Vaccination Contingency.. Modern Preventative Medicine 2001;28(1):59-61.
- 4. Li Y, Wu H, Xu T. Observation of Immunogenicity and Epidemiological Efficacy Assessment of Attenuated Live Hepatitis A Vaccine.. Chinese Journal of Public Health 2000;16(8):737-738.
- 5. Lin F, Gu X, Wang F. Assessment on the spot of Attenuated Live Hepatitis A Vaccine's Efficacy. Acta Academiae Medicinae Suzhou 1997;17(5):868-869.
- 6. Luo D, Li R, Gong J. Epidemiological efficacy of Standardized Live Attenuated Hepatitis A Vaccine(LA- 1 strain). Chinese Journal of Vaccination and Immunization 2004;10(2):210-212.
- 7. Meng Z. Yao J, Zhao Y. Observation on the Immunization effects of Attenuated Live Hepatitis A Vaccine. National Medical Journal of China 2000;80(1):9-11.
- 8. Wu W, Xu Zhiyi, Xia J. Assessment of Attenuated Live Hepatitis A Vaccines protective efficacy on spot.. Chinese journal of public health 1996;12(12):535-536.
- Xu Z, Li R, Meng Z. Immunogenicity and efficacy trials of live attenuated hepatitis A vaccines. National Medical Journal of China 1998;78(4):254-256.
- 10. Xu Z, Li R, Meng Z, Zhang Y, Gong J. Immunogenicity and efficacy of two live attenuated hepatitis A vaccines (H(2) strains and LA- 1 strains). National Medical Journal of China 2002;82(10):678-681.
- 11. Yuan Q, Luo S, Wu X. Observations on the Immunization effects of Attenuated Live Hepatitis A Vaccine. National Medical Journal of China 1995;80(1):9-11.
- 12. Zhang S, Ma J, Han C. Primary research on Efficacy of Attenuated Live Hepatitis A Vaccine. Chinese Journal of Epidemiology 1994;13(6):341-343.

13. Zhang Y, Liu X, Ma J. A field evaluation of the epidemiological efficacy of an attenuated live hepatitis A vaccine (H2 strain). Chinese Journal of Preventative Medicine 2001;35(6):363-365.

Note: this is the systematic review that has been carried out for the 2012 WHO position paper. The summary of findings table has been added for clarity

Annex 7. GRADE table: Hepatitis A vaccine long term protection: Live attenuated single-dose vs no vaccination (2012 systematic review)

Author(s): Ott J, Wiersma S Date: 28 September 2011

Population:	Children and adults
Intervention:	single-dose of Live attenuated Hep A vaccine
Comparison:	No HAV vaccination
Outcome:	Seroprotection rate, Anti HAV Ab geometric median concentration at 7-15 years of vaccination

Question: Should single dose live attenuated hepatitis A vaccine be used for long-term protection against hepatitis A?

	Quality assessment								Effect			
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Single dose live attenuated hepatitis A vaccine	Control	Relative (95% CI)	Absolute	Quality	
Anti-HAV	Anti-HAV antibodies (follow-up 7-15 years; measured with: GMC, GMT, or % seroprotection post vaccination; Better indicated by lower values)											
5	observational studies	_		no serious indirectness	Serious ^b	none	871	-	-	GMT range from 80- 918 ^b	⊕○○○ VERY LOW	
Anti-HAV	antibodies 15 ye	ears after i	mmunization (chil	dren, 1-dose, H2	2 strain LA) (fol	low-up mean 15 yea	rs; Better indi	cated by I	ower value	es)		
1	observational studies			no serious indirectness	serious ^b	none	220 ^c	-	-	GMT 128 ^d	⊕⊖⊖⊖ VERY LOW	

- a. Loss to follow-up not always reported. There is also a risk of confounding because other factors potentially associated with antibody response are not considered.
- b. Confidence intervals not consistently reported and studies often only reported GMC and not ranges of data.
- c. Initially enrolled participants, not clear how many were lost to follow-up.
- d. GMC 128, no CI reported. 81% seroconversion rate. No hepatitis A cases reported.

lary of gs	Statement on quality of evidence	Evidence supports a very low degree of confidence that the true effect lies close to that of the estimate of effect on health outcome.
Summar Findings	Conclusion	Very low scientific evidence that single dose of live attenuated hepatitis A vaccine provide long term seroprotection against hepatitis A.

- 1. Liu HF, Zhang XJ, Zhang JL, Hao ZY, Zhang ZY, Ma JC, Chen JC, Chu J, Wang XY, Xu ZY. [The immunological effects of three doses of a live attenuated hepatitis A vaccine (H2 strain) in 8 years]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2009;23:180-1.
- 2. Liu HF, Zhang XJ, Zhang JL. [Comparison of antibody persistence between live attenuated and inactivated hepatitis A vaccines]. Zhongguo Yi Miao He Mian Yi. 2009a; 15:300-3.
- 3. Wang XY, Xu ZY, Ma JC, von Seidlein L, Zhang Y, Hao ZY, Han OP, Zhang YL, Tian MY, Ouyang PY, Zhang ZY, Han CQ, Xing ZC, Chen JC. Long-term immunogenicity after single and booster dose of a live attenuated hepatitis A vaccine: results from 8-year follow-up. Vaccine 2007;25:446-9.
- 4. Zhuang FC, Qian W, Mao ZA, Gong YP, Jiang Q, Jiang LM, Chen NL, Chai SA, Mao JS. Persistent efficacy of live attenuated hepatitis A vaccine (H2-strain) after a mass vaccination program. Chin Med J 2005;118:1851-6.
- 5. Zhuang FC, Mao ZA, Jiang LM, Wu J, Chen YQ, Jiang Q, Chen NL, Chai SA, Mao JS. [Long-term immunogencity and effectiveness of live attenuated hepatitis A vaccine (H2-strain)-a study on the result of 15 years' follow up.] Zhonghua Liu Xing Bing Xue Za Zhi. 2010;31:1332-35.

Note: this is the systematic review that has been carried out for the 2012 WHO position paper. The summary of findings table has been added for clarity

Annex 8. GRADE table: Hepatitis A vaccine long term protection: Inactivated 1 vs 2/multiple doses. (3-7 years of follow up) (2021 systematic review)

Authors: N Walsh, J Torres

Date of publication: 29 March 2022

Population:	Children 0 - 17 years at the time of vaccination						
Intervention:	Single dose of inactivated Hep A vaccine						
Comparison:	Two doses of inactivated Hep A vaccine						
Outcome:	Hep A disease incidence, seroprotection rate, Anti HAV Ab geometric median concentration at 3-7 years of vaccination						

Question: Can single- dose inactivated hepatitis A vaccines be used to confer long-term protection (3-7 years follow up)?

	Certainty assessment							atients	Eff	ect	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Single dose HAV vaccine (inactivated)	two-dose HAV vaccine (inactivated)	Relative (95% CI)	Absolute (95% Cl)	Certainty

Hepatitis A disease incidence (follow up: range 3 years to 7 years; assessed with: Cases of HAV clinical disease)

1	observational studies	very serious ^{a,b}	not serious	not serious	not serious	publication bias strongly suspected	0/204 (0.0%)	0/53 (0.0%)	not estimable	0 fewer per 1 000 (from 30 fewer to 30 more)	⊕⊖⊖⊖ VERY LOW ¹	
---	--------------------------	--------------------------------	-------------	-------------	-------------	--	--------------	-------------	------------------	--	-------------------------------	--

			Certainty as	sessment		№ of patients Effect					
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Single dose HAV vaccine (inactivated)	two-dose HAV vaccine (inactivated)	Relative (95% CI)	Absolute (95% Cl)	Certainty
Hepatitis	Hepatitis A seroprotection (follow up: range 3 years to 7 years; assessed with: Anti HAV Ab titre > study cut-off)										
5	observational studies	very serious ^a	not serious	not serious	not serious	publication bias strongly suspected c	390/403 (96.8%)	827/831 (99.5%)	RR 1.00 (0.98 to 1.02)	0 fewer per 1 000 (from 20 fewer to 20 more)	⊕○○○ VERY LOW 1,2,3,4,5

Geometric mean concentration (follow up: range 3 years to 7 years; assessed with: Anti HAV Ab titre IU/mL)

4	observational studies	very serious ^a	serious ^d	not serious	not serious	publication bias strongly suspected strong association dose response gradient ^c	289	639	-	MD 188 IU/mL lower (196.8 lower to 179.2 lower)	⊕⊕⊖⊖ LOW ^{1,2,3,4}
										GMC in comparison group: 289 IU/ml	

CI: Confidence interval; RR: Risk ratio; MD: Mean difference

Explanations

a. There are only non-randomized observational studies. Moderate loss to follow up. No control for natural booster in endemic environment.

b. Only one study identified.

c. Limited publications. Manufacturers recommend two doses.

d. Heterogeneity difficult to assess. Only one study had 2 arms

ary of gs	Statement on quality of evidence	Evidence supports a very low degree of confidence that the true effect lies close to that of the estimate of effect on health outcome.
Summar Findings	Conclusion	Very low scientific evidence that single-dose inactivated hepatitis A vaccines provide long term protection (3-7 years) against hepatitis A disease.

1. Espul, C., Benedetti, L., Linares, M., Cuello, H., Lo Castro, I., Thollot, Y., Rasuli, A.. Seven-year follow-up of the immune response after one or 2 doses of inactivated hepatitis A vaccine given at 1 year of age in the Mendoza Province of Argentina. Hum Vaccin Immunother; 2017.

2. Zhang, Z., Zhu, X., Hu, Y., Liang, M., Sun, J., Song, Y., Yang, Q., Ji, H., Zeng, G., Song, L., Chen, J.. Five-year antibody persistence in children after one dose of inactivated or live attenuated hepatitis A vaccine. Hum Vaccin Immunother; 2017.

3. Yu, C., Song, Y., Qi, Y., Li, C., Jiang, Z., Li, C., Zhang, W., Wang, L., Xia, J.. Comparison of immunogenicity and persistence between inactivated hepatitis A vaccine Healive® and Havrix® among children: A 5-year follow-up study. Hum Vaccin Immunother; 2016.

4. Van Herck, K., Hens, A., De Coster, I., Vertruyen, A., Tolboom, J., Sarnecki, M., Van Damme, P.. Long-term antibody persistence in children after vaccination with the pediatric formulation of an aluminum-free virosomal hepatitis A vaccine. Pediatr Infect Dis J; 2015.

5. Luo, J., Wang, X., Ma, F., Kang, G., Ding, Z., Ye, C., Pan, Y., Zhao, Y., Hong, S., Chen, J., Xi, J., Wen, S., Lin, Y., Li, X., Qiu, L., Yang, X., Li, G., Yang, J., Sun, Q.. Long-term immunogenicity and immune persistence of live attenuated and inactivated hepatitis a vaccines: a report on additional observations from a phase IV study. Clin Microbiol Infect; Nov 2019.

Annex 9. GRADE table: Hepatitis A vaccine long term protection: Inactivated 1 vs 2/multiple doses. (above 7 years of follow up) (2021 systematic review).

Authors: N Walsh, J Torres

Date of publication: 29 March 2022

Population:	Children 0 - 17 years at the time of vaccination
Intervention:	Single dose of inactivated Hep A vaccine
Comparison:	Two doses of inactivated Hep A vaccine
Outcome:	Hep A disease incidence, seroprotection rate, Anti HAV Ab geometric median concentration at beyond 7 years of vaccination

Question: Can single- dose inactivated hepatitis A vaccines be used to confer long-term protection (above 7-year follow up)?

Certainty assessment								№ of patients		iect	
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Single dose HAV vaccine (inactivated)	HAV vaccine	Relative (95% Cl)	Absolute (95% CI)	Certainty

Hepatitis A disease incidence (follow up: range 7 years to 25 years; assessed with: Cases of HAV clinical disease)

2	observational	very serious ª	not serious	not serious	serious ^b	none	0/352 (0.0%)		RR 1 (1 to 1)		⊕OOO VERY LOW	
---	---------------	----------------------	-------------	-------------	----------------------	------	--------------	--	-------------------------	--	------------------	--

Certainty assessment								atients	Eff		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Single dose HAV vaccine (inactivated)	two-dose HAV vaccine (inactivated)	(95%) CI)	Absolute (95% CI)	Certainty

Hepatitis A seroprotection (follow up: range 7 years to 25 years; assessed with: Anti HAV Ab titre > study cut-off)

7		very serious ^c erious ^a	not serious	serious ^d	none	342/343 (99.7%)	939/976 (96.2%)	RR 1.00 (0.97 to 1.03)	0 fewer per 1 000 (from 29 fewer to 29 more)	⊕○○○ VERY LOW 1,2,3,4,5,6,7
---	--	---	-------------	----------------------	------	--------------------	--------------------	-------------------------------	--	--------------------------------------

Geometric mean concentration (follow up: range 7 years to 25 years; assessed with: IU/mL)

7	observational studies	very serious a	serious ^c	not serious	not serious	publication bias strongly suspected ^e	348	911		MD 66.5 IU/mL Iower (68.7 Iower to 64.3 Iower to 64.3 Iower). GMC in comparison group: 145 IU/mL	⊕○○ VERY LOW 1,2,3,5,6,7,8
---	--------------------------	----------------------	----------------------	-------------	-------------	--	-----	-----	--	--	-------------------------------------

CI: Confidence interval; RR: Risk ratio; MD: Mean difference

Explanations

a. There are only non-randomized observational studies. Moderate loss to follow up. No control for natural booster in endemic environment.

b. The outcome of incidence is not clearly defined and there is infrequent follow-up during the study.

c. Heterogeneity difficult to assess as only one study had two arms.

d. There is variability in the threshold of seroprotection.

e. There are limited publications, and the vaccine manufacturers recommend two doses.

imary of lings	Statement on quality of evidence	Evidence supports a very low degree of confidence that the true effect lies close to that of the estimate of effect on health outcome.
Summ Findin	Conclusion	Very low scientific evidence that single-dose inactivated hepatitis A vaccines provide long term protection (above 7 years) against hepatitis A disease.

1. Mayorga, O., Bühler, S., Jaeger, V. K., Bally, S., Hatz, C., Frösner, G., Protzer, U., Van Damme, P., Egger, M., Herzog, C.. Single-Dose Hepatitis A Immunization: 7.5-Year Observational Pilot Study in Nicaraguan Children to Assess Protective Effectiveness and Humoral Immune Memory Response. J Infect Dis; 2016.

2. Espul, C., Cuello, H., Lo Castro, I., Bravo, C., Thollot, Y., Voznica, J., Vigne, C., Coudeville, L.. Statistical modeling alongside observational data predicts long-term immunogenicity of one dose and two doses of pediatric hepatitis A vaccine in the Mendoza province of Argentina. Vaccine; 2020.

3. Wang, Y., Qi, Y., Xu, W., Hu, Y., Wang, L., Yu, Y., Jiang, Z., Xia, J., Zeng, G., Wang, Y.. Immunogenicity persistence in children of hepatitis A vaccines Healive® and Havrix®: 11 years follow-up and long-term prediction. Hum Vaccin Immunother; 2020.

4. Ramaswamy, M., Bruden, D., Nolen, L. D., Mosites, E., Snowball, M., Nelson, N. P., Bruce, M., McMahon, B. J.. Hepatitis A vaccine immunogenicity 25 years after vaccination in Alaska. Journal of Medical Virology; 2020.

5. Lopez, E. L., Contrini, M. M., Mistchenko, A., Kieffer, A., Baggaley, R. F., Di Tanna, G. L., Desai, K., Rasuli, A., Armoni, J.. Modeling the long-term persistence of hepatitis A antibody after a two-dose vaccination schedule in Argentinean children. Pediatr Infect Dis J; Apr 2015.

6. Dagan, R., Ashkenazi, S., Livni, G., Go, O., Bagchi, P., Sarnecki, M.. Long-term Serologic Follow-up of Children Vaccinated with a Pediatric Formulation of Virosomal Hepatitis A Vaccine Administered With Routine Childhood Vaccines at 12-15 Months of Age. Pediatr Infect Dis J; 2016.

7. Spradling, P. R., Bulkow, L. R., Negus, S. E., Homan, C., Bruce, M. G., McMahon, B. J.. Persistence of seropositivity among persons vaccinated for hepatitis A during infancy by maternal antibody status: 15-year follow-up. Hepatology (Baltimore, Md.); 2016.

8. Mosites, E., Gounder, P., Snowball, M., Morris, J., Spradling, P., Nelson, N., Bulkow, L., Bruce, M., McMahon, B.. Hepatitis A vaccine immune response 22 years after vaccination. J Med Virol; 2018.

Annex 10. GRADE table: Hepatitis A vaccine long term protection: Live attenuated single-dose vs 2/multiple doses of inactivated vaccine (3-7 years of follow up) (2021 systematic review).

Authors: N Walsh, J Torres

Date of publication: 29 March 2022

Population:	Children 0 - 17 years at the time of vaccination
-------------	--

Intervention: Single dose of live attenuated Hep A vaccine

Comparison: Two doses of inactivated Hep A vaccine

Outcome: Hep A disease incidence, seroprotection rate, Anti HAV Ab geometric median concentration at 3-7 years of vaccination

Question: Can live attenuated hepatitis A vaccines be used to confer long-term protection (3-7 years follow up)?

Certainty assessment								№ of patients		Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Single dose HAV vaccine (live attenuated)	two-dose HAV vaccine (inactivated)	Relative (95% CI)	Absolute (95% CI)	Certainty	

Hepatitis A disease incidence (follow up: range 3 years to 7 years)

2	observational studies	very serious ^{a,b}	serious ^b	not serious	not serious	publication bias strongly suspected ^b	0/111 (0.0%)	0/53 (0.0%)	RR 1 (1 to 1)	0 fewer per 1 000 (from 30 fewer to 30 more)	⊕OOO VERY LOW ^{1,2}	
---	--------------------------	-----------------------------------	----------------------	-------------	-------------	--	--------------	-------------	-------------------------	--	------------------------------------	--

Certainty assessment							Nº of p	oatients	Ef		
º of Idies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Single dose HAV vaccine (live attenuated)	two-dose HAV vaccine (inactivated)	Relative (95% Cl)	Absolute (95% Cl)	Certainty

Hepatitis A seroprotection (at study cut-off) (follow up: range 3 years to 7 years)

6	observational studies	very serious _{a,c}	not serious	not serious	not serious	publication bias strongly suspected ^b	1158/1173 (98.7%)	795/799 (99.5%)	RR 1.00 (0.99 to 1.01)	0 fewer per 1 000 (from 10 fewer to 10 more)	⊕○○○ VERY LOW 1,2,3,4,5,6	
---	--------------------------	-----------------------------------	-------------	-------------	-------------	--	----------------------	--------------------	-------------------------------	--	------------------------------------	--

Hepatitis A GMC (anti-HAV ab titre) (follow up: range 3 years to 7 years)

5	observational studies	very serious _{a,c}	serious ^d	not serious	serious ^e	publication bias strongly suspected strong association dose response gradient ^c	703	639	-	MD 147.6 IU/mL Iower (156.7 Iower to 138.5 Iower)	⊕○○○ VERY LOW 1.2.3.4,6
										The GMC in comparison group : 288.9 IU/mL	

CI: Confidence interval; RR: Risk ratio; MD: Mean difference

Explanations

a. There are only non-randomized observational studies. Moderate loss to follow up. No control for natural booster in endemic environment.

b. There are no two-dose live attenuated studies in children published.

c. The two-dose group is always inactive vaccine.

d. There is heterogeneity in effect size, including no direction of effect in one study.

e. Wide confidence intervals are reported.

ary of gs	Statement on quality of evidence	Evidence supports a very low degree of confidence that the true effect lies close to that of the estimate of effect on health outcome.
Summar' Findings	Conclusion	Very low scientific evidence that live attenuated hepatitis A vaccines provide long term protection (3-7 years) against hepatitis A disease.

References

1. Mitra, M., Shah, N., Faridi, M., Ghosh, A., Sankaranarayanan, V. S., Aggarwal, A., Chatterjee, S., Bhattacharyya, N., Kadhe, G., Vishnoi, G., Mane, A. Long term follow-up study to evaluate immunogenicity and safety of a single dose of live attenuated hepatitis a vaccine in children. Hum Vaccin Immunother; 2015.

2. Espul, C., Benedetti, L., Linares, M., Cuello, H., Lo Castro, I., Thollot, Y., Rasuli, A.. Seven-year follow-up of the immune response after one or 2 doses of inactivated hepatitis A vaccine given at 1 year of age in the Mendoza Province of Argentina. Hum Vaccin Immunother; 2017.

3. Zhang, Z., Zhu, X., Hu, Y., Liang, M., Sun, J., Song, Y., Yang, Q., Ji, H., Zeng, G., Song, L., Chen, J.. Five-year antibody persistence in children after one dose of inactivated or live attenuated hepatitis A vaccine. Hum Vaccin Immunother; 2017.

4. Yu, C., Song, Y., Qi, Y., Li, C., Jiang, Z., Li, C., Zhang, W., Wang, L., Xia, J.. Comparison of immunogenicity and persistence between inactivated hepatitis A vaccine Healive® and Havrix® among children: A 5-year follow-up study. Hum Vaccin Immunother; 2016.

5. Luo, J., Wang, X., Ma, F., Kang, G., Ding, Z., Ye, C., Pan, Y., Zhao, Y., Hong, S., Chen, J., Xi, J., Wen, S., Lin, Y., Li, X., Qiu, L., Yang, X., Li, G., Yang, J., Sun, Q.. Long-term immunogenicity and immune persistence of live attenuated and inactivated hepatitis a vaccines: a report on additional observations from a phase IV study. Clin Microbiol Infect; Nov 2019.

6. Van Herck, K., Hens, A., De Coster, I., Vertruyen, A., Tolboom, J., Sarnecki, M., Van Damme, P.. Long-term antibody persistence in children after vaccination with the pediatric formulation of an aluminum-free virosomal hepatitis A vaccine. Pediatr Infect Dis J; 2015.

Annex 11. GRADE table: Hepatitis A vaccine long term protection: Live attenuated single-dose vs 2/multiple doses of inactivated vaccine (above 7 years of follow up).

Authors: N Walsh, J Torres

Date of publication: 29 March 2022

Population:	Children 0 - 17 years at the time of vaccination
Intervention:	Single dose of live attenuated Hep A vaccine
Comparison:	Two doses of inactivated Hep A vaccine
Outcome:	Hep A disease incidence, seroprotection rate, Anti HAV Ab geometric median concentration at beyond 7 years of vaccination

Question: Can live attenuated hepatitis A vaccines be used to confer long-term protection (above 7-year follow up)?

	Certainty assessment							oatients	Eff	fect	
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	considerations	Single dose HAV vaccine (live- attenuated)	2 doses HAV vaccine (inactivated)	Relative (95% CI)	Absolute (95% CI)	

Hepatitis A disease incidence (follow up: range >7 years to 25 years; assessed with: Cases of HAV clinical disease)

2	observational studies	very serious _{a,b}	serious ^b	not serious	not serious ^c	publication bias strongly suspected ^{b,c}	0/98 (0.0%)	0/51 (0.0%)	RR 1 (1 to 1)	0 fewer per 1 000 (from 30 fewer to 30 more)	⊕OOO VERY LOW	
---	--------------------------	-----------------------------------	----------------------	-------------	--------------------------	--	-------------	-------------	-------------------------	--	------------------	--

Certainty assessment							Nº of p	oatients	Ef	fect	
l⁰ of udies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Single dose HAV vaccine (live- attenuated)	2 doses HAV vaccine (inactivated)	Relative (95% CI)	Absolute (95% CI)	Certainty

Hepatitis A seroprotection (follow up: range >7 years to 25 years; assessed with: Anti HAV Ab titre > study cut-off)

7	observational studies	very serious _{a,b}	serious ^b	not serious	serious ^d	publication bias strongly suspected ^c	123/145 (84.4%)	863/881 (98.0%)	RR 1.00 (0.97 to 1.03)	0 fewer per 1 000 (from 29 fewer to 29 more)	⊕○○○ VERY LOW 1,2,3,4,5,6,7,e
---	--------------------------	-----------------------------------	----------------------	-------------	----------------------	--	--------------------	--------------------	-------------------------------	--	-------------------------------------

Geometric mean concentration (follow up: range >7 years to 25 years; assessed with: IU/mL)

7	observational studies	very serious _{a,b}	serious ^e	not serious	serious	publication bias strongly suspected _{b,c}	98	676	-	MD 65.4 IU/mL lower (68 lower to 62 lower)	⊕○○○ VERY LOW 1,2,3,4,5,6,7,e
										The GMC in comparison group : 145 IU/mL	

CI: Confidence interval; RR: Risk ratio; MD: Mean difference

Explanations

a. There are only non-randomized observational studies. Moderate loss to follow up. No control for natural booster in endemic environment.

b. There are no 2 dose live attenuated studies in children published.

c. The vaccine manufacturers recommend two doses.

d. There is variability in the threshold of seroprotection.

e. The heterogeneity in effect size difficult to assess given limited single dose live attenuated studies.

ımary of lings	Statement on quality of evidence	Evidence supports a very low degree of confidence that the true effect lies close to that of the estimate of effect on health outcome.
Summ Findin	Conclusion	Very low scientific evidence that live attenuated hepatitis A vaccines provide long term protection (above 7 years) against hepatitis A disease.

1.Bhave, S., Sapru, A., Bavdekar, A., Jain, R., Debnath, K., Kapatkar, V.. Long term Immunogenicity of Single Dose of Live Attenuated Hepatitis A Vaccine in Indian Children - Results of 15-year Follow-up. Indian Pediatr; 2021.

2.Espul, C., Cuello, H., Lo Castro, I., Bravo, C., Thollot, Y., Voznica, J., Vigne, C., Coudeville, L.. Statistical modeling alongside observational data predicts long-term immunogenicity of one dose and two doses of pediatric hepatitis A vaccine in the Mendoza province of Argentina. Vaccine; 2020.

3.Wang, Y., Qi, Y., Xu, W., Hu, Y., Wang, L., Yu, Y., Jiang, Z., Xia, J., Zeng, G., Wang, Y.. Immunogenicity persistence in children of hepatitis A vaccines Healive® and Havrix®: 11 years follow-up and long-term prediction. Hum Vaccin Immunother; 2020.

4.Spradling, P. R., Bulkow, L. R., Negus, S. E., Homan, C., Bruce, M. G., McMahon, B. J.. Persistence of seropositivity among persons vaccinated for hepatitis A during infancy by maternal antibody status: 15-year follow-up. Hepatology (Baltimore, Md.); 2016.

5.Mosites, E., Gounder, P., Snowball, M., Morris, J., Spradling, P., Nelson, N., Bulkow, L., Bruce, M., McMahon, B., Hepatitis A vaccine immune response 22 years after vaccination. J Med Virol; 2018.

6.Lopez, E. L., Contrini, M. M., Mistchenko, A., Kieffer, A., Baggaley, R. F., Di Tanna, G. L., Desai, K., Rasuli, A., Armoni, J.. Modeling the long-term persistence of hepatitis A antibody after a two-dose vaccination schedule in Argentinean children. Pediatr Infect Dis J; Apr 2015.

7.Dagan, R., Ashkenazi, S., Livni, G., Go, O., Bagchi, P., Sarnecki, M. Long-term Serologic Follow-up of Children Vaccinated with a Pediatric Formulation of Virosomal Hepatitis A Vaccine Administered With Routine Childhood Vaccines at 12-15 Months of Age. Pediatr Infect Dis J; 2016.

Annex 12. SAGE evidence-to-recommendation framework: Should hepatitis A vaccination two doses inactivated vs no intervention, inactive control or placebo be used to prevent hepatitis A disease?

Background		
Outcome:	Efficacy, effectiveness (disease seroprotection, GMC titres), long term protection, safety	
Comparison(s):	No intervention, inactive control or placebo	
Intervention:	Two doses of inactivated vaccine	
Population:	Children 0 - 17 years; adults (vaccinated during childhood)	
Question:	Should hepatitis A vaccination two doses inactivated vs no intervention, inactive control or placebo be used to prevent hepatitis A disease ?	

Background:

Hepatitis A is caused by the hepatitis A virus (HAV) which is transmitted primarily via the faecal/oral route either through ingestion of contaminated food and water or through direct contact with an infectious person. The incidence of hepatitis A is strongly correlated with socioeconomic indicators; with increasing income and access to clean water and adequate sanitation, the incidence of HAV infection decreases (1-3).

	CRITERIA	JUDGEMENTS			RESEARCH EVIDENCE	ADDITIONAL INFORMATION		
PROBLEM	Is the problem a public health priority?	No	Uncertain	Yes	Varies I setting	бу	An estimated 159 million acute hepatitis A cases and 39 000 deaths occurred in 2019, with 2.3 million disability-adjusted life years related to hepatitis A (4).	The burden of disease in 2019 was not equally distributed worldwide. Overall, 66% of acute hepatitis A cases and 97% of hepatitis A deaths occurred in low-income countries and low- middle-income countries. In absolute numbers, South-East Asia had the greatest number of hepatitis A cases (42 million) and deaths (23 711; 60% of the total number of deaths). In terms of rates, hepatitis A disease incidence was highest in the African

								Region (3.8 infections per 100 population per year) and hepatitis A- related mortality was highest in South-East Asia and Eastern Mediterranean Region (12 deaths per million population per year).
LIONS	Benefits of the intervention Are the desirable anticipated effects large?	Νο	Uncertain	Yes		Varies	Vaccine efficacy in a randomised control trial in Thailand on 40 000 children was 94% (5). Vaccine effectiveness has been shown based on disease reduction across many countries (6-8). The impact on the population level depends on the hepatitis A prevalence in the country, but studies all suggest decreased disease incidence post vaccine introduction (9-13).(see	a
BENEFITS & HARMS OF THE OPTIONS							Annex 1). Observational studies with follow-up up to 25 years (with two or three doses) suggest long term seroprotection (14-20). (see Annex 8 and Annex 9).	
BENEFITS &	Harms of the intervention Are the undesirable anticipated	No	Uncertain	Yes		Varies	Inactivated vaccines have an excellent and well documented safety profile (21-26).	Note that for a population level perspective in high endemicity populations, the risk of paradoxical increase of the disease exists.
	effects small?							
	Balance between	Favours intervention	Favours comparison	Favours both	Favours neither	Unclear	Efficacy, effectiveness, and seroprevalence data demonstrate a	

	benefits and harms						highly efficacious vaccine that provides long-term protection. The safety profile is excellent. The balance favours clearly the intervention.	
	What is the	Effectivene	ss of the interv	ention			The quality of the evidence for	
	overall quality of this evidence for	No included studies	Very low	Low	Moderate	High	efficacy and safety is high (Annex 1). Quality for effectiveness and long-term protection is very low due	
	the critical outcomes?		\boxtimes			\boxtimes	to the observational studies, with potential confounding bias and	
		Safety of th	e intervention				important loss to follow up in long time series. (For details see Annex	
		No included studies	Very low	Low	Moderate	High	8, Annex 9, Annex 10, Annex 11)	
						\boxtimes		
RENCES	How certain is the relative importance of the desirable and undesirable outcomes?	Important uncertainty or variability □	Possibly important uncertainty or variability □	Probably no important uncertainty or variability	No important uncertainty or variability	No known undesirabl e outcomes	There doesn't seem to be any substantial item on the undesirable outcome side. Hence it is likely that the uncertainty/variability is not important.	
E								
VALUES & PREFERENCES	Values and preferences of the target population: Are the desirable effects large relative to undesirable effects?	No	Probably Unc No	ertain Proba Yes	bly _{Yes}	Varies	While, severe disease and risk of fulminant hepatitis is certainly undesirable, based on our review it is not entirely clear in how important	
VAI				X			the target population is sensitized to the hepatitis A disease (depends on the epidemiology of the disease in a given setting) and thus to the benefits of the vaccine.	
RESOU RCE USE	Are the resources required small?	No ⊠	Uncertain	Yes		Varies □	Hepatitis A is a rather costly vaccine (7-20USD, depending on the country), not covered by the GAVI mechanism. The additional	

						programme costs must also be considered.	
	Cost- effectiveness	No	Uncertain	Yes	<i>Varies</i> ⊠	The opportunity for initiating universal childhood vaccination programme depends on the endemicity of HAV in the country. Studies indicate that the intervention is cost effective (or even cost saving under certain conditions) in intermediate endemicity settings, where virus circulation is still high, but a growing pool of naïve subjects not exposed in early life are at risk of severe hepatitis A disease. (27)	
						In high endemicity settings, where children acquire life-long immunity early in life, vaccination is not cost effective. In low and very low endemicity settings the intervention is most likely not cost effective. The paradoxical increase of the disease in a suboptimal coverage situation would further deteriorate the cost effectiveness.	
EQUITY	What would be the impact on health inequities?	Increased	Uncertain	Reduced	Varies ⊠	The intervention is triggered in LMIC by certain levels of decreased endemicity which shifts infection to older ages. In those settings the intervention would likely decrease inequities as the people who are underserved or disadvantaged (if they are reached by the intervention) are more exposed to the disease due to their living or working conditions.	
ACCEPT ABILITY	Which option is acceptable to key stakeholders	Intervention	Comparison Both	Neither	Un-clear	This depends on the endemicity, and the disease burden.	

	(e.g. ministries of health, immunization managers)?								
	Which option is acceptable to target group?	Intervention Comp	arison Both	Neithe	r Un-clear	profile an long last disease	The vaccine has an excellent profile and provides sustained long lasting protection agains disease which should contrib		Specific high risk groups would benefit from targeted approaches/ counselling to improve
						tailored	nce. Provision of audi information is like uptake. <i>(28)</i>		willingness to receive vaccine (29).
FEASIBIL ITY	ls the intervention	No Probab No No	y Uncertain	<i>Probably</i> Yes	'es Varies	year of	g platforms (at least se life immunization plat	tform)	
FEA	feasible to implement?						are used for the programme intervention is feasible		
BALANG	CE OF QUENCES	Undesirable consequences <i>cl</i> <i>outweigh</i> desir consequences in settings	able outweig	quences <i>proba</i> gh desiral quences in mo	ole undesirable	and s is closely	undesirable	weigh	Desirable consequences <i>clearly outweigh</i> undesirable consequences in most settings
									\boxtimes
		We recommend the	ntervention	We sugges recommendation intervention		We recomn	nend the comparison		recommend against the vention and the comparison
TYPE O	F MENDATION			□ Only in the co research	ntext of rigorous				
				Only with tare and evaluation	geted monitoring				
				⊠ Only in spe specific (sub)pc	cific contexts or pulations				

	WHO recommends vaccination against hepatitis A virus (HAV) to be introduced into the national immunization schedules for children aged ≥12 months, if indicated on the basis of (1) an increasing trend over time of acute hepatitis A disease, including severe disease, among older children, adolescents or adults, (2) changes in the endemicity from high to intermediate, and (3) considerations of cost-effectiveness.
	Inactivated hepatitis A vaccines are safe, highly immunogenic and immunization with them generates long-lasting, possibly life-long, protection against hepatitis A in children, as well as in adults.
	For childhood immunization, inactivated hepatitis A vaccines can be given as a single or 2-dose schedule. For the 2-dose schedule, the doses should be administered intramuscularly (IM) with the first dose given starting from 1 year of age or older and a flexible interval from 6 months up to 4-5 years between the doses, but is usually 6–18 months.
RECOMMENDATION (TEXT)	To guide country decisions on choice of vaccination strategy (universal childhood immunization versus vaccination of selected high-risk population groups) countries should collect and review the information needed to estimate their national burden of hepatitis A. In addition to surveys estimating age-specific prevalence of anti-HAV IgG antibodies, this may require examining data on hepatitis A incidence, associated morbidity (hospitalization, fulminant hepatic failure or liver transplantation) and mortality. Economic evaluation, including cost-effectiveness analyses of relevant immunization strategies, is a useful additional element for decision-making.
	In highly endemic countries, almost all persons are asymptomatically infected with HAV in childhood, which prevents clinical hepatitis A in adolescents and adults. In these countries, large-scale vaccination programmes are not routinely recommended, because they carry a risk of a paradoxical increase in disease incidence in unvaccinated people. If a country nevertheless wishes to consider large-scale vaccination, a thorough prior risk-benefit analysis and ensuring a high vaccine coverage are essential to avoid this risk.
	Countries with improving socioeconomic status may rapidly move from high to intermediate hepatitis A endemicity, rendering a larger proportion of the adolescent and/or young adult population susceptible to HAV infection. In these countries, large-scale hepatitis A vaccination in early childhood is likely to be cost-effective and is therefore recommended. When introducing the vaccine in such situations, countries should consider the need for catch-up immunization based on age-specific seroprevalence rates or other markers of susceptibility.
	Targeted vaccination of high-risk groups should be considered in low and very low endemicity settings to provide individual health benefits. See special populations section.
IMPLEMENTATION CONSIDERATIONS	Inactivated vaccines can be administered simultaneously with any of the vaccines routinely used in childhood immunization programmes or for travel prophylaxis. Currently, inactivated HAV vaccines are licensed for intramuscular administration in a two-dose schedule with the first dose given at the age 1 year, or older. The interval between the first (primary) dose and the second (booster) dose is flexible (from 6 months up to 4–5 years), but is usually 6–18 months.

MONITORING, EVALUATION AND RESEARCH PRIORITIES	Long term effectiveness of the vaccine has been shown beyond 7 years and up to 25 years. Following introduction of hepatitis A vaccines, regular assessment of their impact using morbidity and mortality surveillance data as well as monitoring seroprotection is important. Modelling studies to describe the relationship between levels of endemicity over time, mean age at infection and increased risk of symptomatic and severe disease are needed to better guide countries on determining the right timing for childhood vaccination introduction.
---	--

Annex 13. SAGE evidence-to-recommendation framework: Should single dose hepatitis A vaccination (inactivated or live-attenuated) vs two doses inactivated be used to prevent hepatitis A disease?

Question:	Should single dose hepatitis A vaccination (inactivated or live-attenuated) vs two doses inactivated be used to prevent hepatitis A disease?
Population:	Children 0 - 17 years; adults
Intervention:	Single dose of inactivated or live attenuated vaccine
Comparison(s):	Two doses of inactivated vaccine
Outcome:	Efficacy, effectiveness, long term protection, safety
Background:	

While inactivated HAV vaccines are licensed in a two-dose schedule, in the past 15-20 years around 20 countries, in Latin America, Asia, Eastern Mediterranean and Europe have introduced universal childhood programme with a one-dose schedule for cost saving reasons.

Conversely, live attenuated vaccines are licensed as single dose vaccines. While these vaccines are not WHO prequalified, they are widely used in China and India.

	CRITERIA	JUDGEMENTS			RESEARCH EVIDENCE	ADDITIONAL INFORMATION		
PROBLEM	Is the problem a public health priority?	No	Uncertain	Yes	Varies b setting	уy	An estimated 159 million acute hepatitis A cases and 39 000 deaths occurred in 2019, with 2.3 million disability-adjusted life years related to hepatitis A (4).	The burden of disease in 2019 was not equally distributed worldwide. Overall, 66% of acute hepatitis A cases and 97% of hepatitis A deaths occurred in low-income countries and low- middle-income countries. In absolute numbers, South-East Asia had the greatest number of hepatitis A cases (42 million) and deaths (23 711; 60% of the total number of deaths). In terms of rates, hepatitis A disease incidence was highest in the African

Benefits of the intervention No Uncertain Yes Varies Inactivated one dose Vacine efficacy against HAV disease in a randomised control trial in Nicaragua in 500 children with a single dose of inactivated vacine was 85% (30).(Annex 2) The WG considered it more adequate to look at the benefits of the intervention (single dose) in stown right (not compared to its comparator on this suggests no officerce between HAV single-dose vaccine versus multiple-dose vaccine versus versus dose not mervention).						Region (3.8 infections per 100 population per year) and hepatitis A- related mortality was highest in South-East Asia and Eastern Mediterranean Region (12 deaths per million population per year).
Long term protection	BENEFITS & HARMS OF THE OPTIONS	intervention Are the desirable anticipated			Vaccine efficacy against HAV disease in a randomised control trial in Nicaragua in 500 children with a single dose of inactivated vaccine was 85% (30).(Annex 2) A meta-analysis on effectiveness of the long term seroprotection suggests no difference between HAV single-dose vaccine versus multiple-dose vaccine versus multiple-dose vaccine schedules, in terms of disease incidence and seropositivity for follow up to 12 years. A single dose however showed lower GMC IgG titers in one dose vs two-dose schedules. The clinical significance of this is unknown .(see Grade tables (Annex 8 and Annex 9). (very low level of confidence (level 1, or ⊕). Live attenuated one dose Vaccine efficacy in 5 RCTs, as summarized in a large meta- analysis on single dose live attenuated HAV schedules was 91% (Grade table 2).	more adequate to look at the benefits of the intervention (single dose) in its own right (not compared to its comparator on this question). That is why it considers that the benefits are large (compared with doing no

						A meta-analysis on effectiveness on long term seroprotection suggests no difference between HAV single- dose live attenuated vaccine versus multiple-dose inactivated vaccine schedules, in terms of disease incidence and seropositivity for follow up to 15 years. It however showed lower GMC IgG titers in one dose live attenuated vs two-dose inactivated schedules. The clinical significance of this is unknown. (see Grade tables (Annexes 10 and 11).	
Harms of the intervention	No	Uncertain	Yes		Varies	Inactivated vaccines have an excellent and well documented safety profile (21-26).	
Are the undesirable anticipated effects small?			\boxtimes			For live-attenuated vaccines, clinical trials and passive surveillance have not identify any safety concern, but the safety profile is less well documented <i>(3, 26, 31, 32)</i> .	
Balance between benefits and harms	Favours intervention	Favours comparison	Favours both	Favours neither	Unclear	With a long term follow up of up to 10 to 15 years, the one dose strategies (inactivated or live attenuated) seem to be equally as effective as the two-dose strategy. With the caveat of a less well documented safety profile for the	
						live attenuated vaccine, one and two-dose strategies seems to be equivalent with regards to the benefits and harms balance. It is yet unclear for both dose schedules whether seroprotection has a lifelong duration.	
	Effectivenes	s of the interv	ention				

	What is the overall quality of this evidence for the critical outcomes?	No included studies Safety of the No included studies	Very low ⊠ intervention Very low □	Low Low	Moderate	High ⊠ High	The quality for efficacy, effectiveness and safety is high for both one- and two-dose schedules. Quality for long term protection is very low in both one- and two-dose schedules due to the observational nature of these studies, with potential confounding bias and important loss to follow up in long time series. For details see Grade tables.	
VALUES & PREFERENCES	How certain is the relative importance of the desirable and undesirable outcomes?	Important uncertainty or variability	Possibly important uncertainty or variability	Probably no important uncertainty or variability	No important uncertainty or variability	No known undesirabl e outcomes	Overall the desired outcome (HAV disease prevention) clearly outweighs harms for these vaccines. However, internationally published evidence on the safety and tolerability of the live attenuated hepatitis A vaccines is more limited.	
	Values and preferences of the target population: Are the desirable effects large relative to undesirable effects?	NO	NO	ertain Proba. Yes ⊠	bly _{Yes}	Varies ⊠	This is context dependant. In intermediate endemicity contexts where hepatitis A disease prevalence is high (in particular hepatitis fulminans) the desirable effects will be large. A one dose strategy will likely be preferred to a two-dose schedule.	
RESOURCE USE	Are the resources required small?	No	Uncertain	Yes		Varies □	In comparison with the two-dose approach the single-dose approach will result in up to 50% cost savings. (see ETR table Annex 12)	
	Cost- effectiveness	No	Uncertain	in Yes ⊠		Varies □	The opportunity for initiating universal childhood vaccination programme depends on the endemicity of HAV in the country. Studies indicate that the intervention is cost effective (or	

						even cost saving under certain conditions) in intermediate endemicity settings, where virus circulation is still high, but a growing pool of naïve subjects not exposed in early life are at risk of severe hepatitis A disease. (27)	
						In high endemicity settings, where children acquire life-long immunity early in life, vaccination is not cost effective. In low and very low endemicity settings the intervention is most likely not cost effective. The paradoxical increase of the disease in a suboptimal coverage situation would further deteriorate the cost effectiveness.	
						The intervention (one dose) will likely be cost saving than the comparator (two doses).	
Εαυιτγ	What would be the impact on health inequities?	Increased	Uncertain	Reduced	Varies	As one dose is the complete series, the effort to reach the disadvantaged population needs only to be made once, not twice. This may increase the ability to reach the most difficult to reach with	
Ш						this interventions. In addition, more resources will be available to reach all the population and potentially to dedicate to reach the underserved or disadvantaged populations.	
ACCEPT ABILITY	Which option is acceptable to key stakeholders	Intervention	Comparison Both	n Neither	Un-clear	This will be dependent on the country context i.e. (epidemiological context, current use of two-dose schedule; mandate of NITAGs to	

	(e.g. ministries of health, immunization managers)?			⊠			etc.). In o not have consider equal hea would interventi	off label recommenda countries that curren a routine programm introduction, with exp alth benefits, stakeho very likely favour on approach, as one and cheaper to imple doses.	tly do e but ected olders the dose	
	Which option is acceptable to target group?	Intervention	<i>Comparison</i>	Both	Neither	Un-clear □	The vaccine has an excellent safety profile and provides solid, and long lasting protection against HAN disease which should contribute to uptake. The one dose schedule and provision of audience-tailored		Iong- HAV ute to e and ilored	Specific high-risk groups should benefit from targeted approaches/ counselling to improve willingness to vaccinate (29).
							informatio uptake.(2	on is likely to im	prove	
FEASIBIL ITY	ls the intervention	No	Probably No Un		Probably Yes Tes	Varies	A single	dose schedule is eas it than two-dose sche		
FEA	feasible to implement?			C						
BALANCE OF CONSEQUENCES		Undesirable consequen outweigh consequen settings	ces <i>clearly</i> desirable ces in most	outweigh	le nces <i>probably</i> desirable nces in most	undesirable	and s is closely	Desirable conseque probably out undesirable consequences in settings	weigh	Desirable consequences clearly outweigh undesirable consequences in most settings
										\boxtimes
		We recomn	nend the interve		suggest ommendation rvention	considering of the	We recomm	end the comparison		recommend against the vention and the comparison
TYPE OI RECOM	F MENDATION				Only in the conte earch	ext of rigorous	X			
					Only with targete l evaluation	ed monitoring				
					Only in specific cific (sub)popul					

RECOMMENDATION (TEXT)	 WHO recommends vaccination against hepatitis A virus (HAV) to be introduced into the national immunization schedules for children aged ≥12 months, if indicated on the basis of (1) an increasing trend over time of acute hepatitis A disease, including severe disease, among older children, adolescents or adults, (2) changes in the endemicity from high to intermediate, and (3) considerations of cost-effectiveness. Both inactivated and live attenuated hepatitis A vaccines are safe, highly immunogenic and immunization with them generates long-lasting, possibly life-long, protection against hepatitis A vaccines can be given as a single or 2-dose schedule, and administered intramuscularly (IM). For the 2-dose schedule, the first dose should be given starting from 12 months of age or older. The interval between doses is flexible, from 6 months up to 4–5 years or more, but is usually 6–18 months. Data on vaccine effectiveness, antibody persistence, and modelling on long-term seroprotection indicate that an off-label, single-dose schedule is equivalent to the two-dose schedule in children, in addition to being less expensive and easier to implement. For vaccination with inactivated vaccines of adults above 40 years, the 2-dose schedule should be preferred, since sufficient evidence on the immunogenicity and long-term protection from a single dose in this age group is not available.
IMPLEMENTATION CONSIDERATIONS	Inactivated hepatitis A vaccines produced by different manufacturers, including combined hepatitis A vaccines, are interchangeable. Inactivated vaccines can be administered simultaneously with any of the vaccines routinely used in childhood immunization programmes or for travel prophylaxis. The live attenuated vaccine is administered as a single subcutaneous dose.
MONITORING, EVALUATION AND RESEARCH PRIORITIES	Long term efficacy of the vaccine has been shown beyond 7 years and seroprotection up to 15 years (Live-attenuated vaccine) and 12 year (inactivated vaccines). Following introduction of hepatitis A vaccines, regular assessment of their impact using morbidity and mortality surveillance data as well as monitoring seroprotection is important. The duration of protection induced by single- and two-dose schedules should be regularly monitored. Modelling studies to describe the relationship between levels of endemicity over time, mean age at infection and increased risk of symptomatic and severe disease are needed to better guide countries on determining the right timing for childhood vaccination introduction. Further data need to be generated on individuals vaccinated by a single dose of inactivated vaccine during adult age, in particular when over 40 years, to confirm long-term protection.

- 1. WHO position paper on hepatitis A vaccines June 2012. Wkly Epidemiol Rec. 2012;87:261-76.
- 2. Jacobsen KH, Wiersma ST. Hepatitis A virus seroprevalence by age and world region, 1990 and 2005. Vaccine. 2010;28:6653-7. doi: 10.1016/j.vaccine.2010.08.037.
- 3. World Health O. WHO immunological basis for immunization series: module 18: hepatitis A. Update 2019 ed. Geneva: World Health Organization; 2019 (https://apps.who.int/iris/handle/10665/326501.
- 4. IHME. Global Burden of Disease Study 2019. (<u>http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/b438cc82035247f8c3f8673ca6e3b62a</u>, accessed 15 December 2021).
- 5. Innis BL, Snitbhan R, Kunasol P, Laorakpongse T, Poopatanakool W, Kozik CA et al. Protection against hepatitis A by an inactivated vaccine. Jama. 1994;271:1328-34.
- 6. Bialek SR, Thoroughman DA, Hu D, Simard EP, Chattin J, Cheek J et al. Hepatitis A incidence and hepatitis a vaccination among American Indians and Alaska Natives, 1990-2001. Am J Public Health. 2004;94:996-1001.
- 7. Lopalco PL, Salleras L, Barbuti S, Germinario C, Bruguera M, Buti M et al. Hepatitis A and B in children and adolescents--what can we learn from Puglia (Italy) and Catalonia (Spain)? Vaccine. 2000;19:470-4. doi: 10.1016/s0264-410x(00)00193-6.
- 8. Hanna JN, Hills SL, Humphreys JL. Impact of hepatitis A vaccination of Indigenous children on notifications of hepatitis A in north Queensland. Med J Aust. 2004;181:482-5. doi: 10.5694/j.1326-5377.2004.tb06404.x.
- 9. Thompson C, Dey A, Fearnley E, Polkinghorne B, Beard F. Impact of the national targeted Hepatitis A immunisation program in Australia: 2000-2014. Vaccine. 2017;35:170-6. doi: 10.1016/j.vaccine.2016.11.002.
- 10. Levine H, Kopel E, Anis E, Givon-Lavi N, Dagan R. The impact of a national routine immunisation programme initiated in 1999 on Hepatitis A incidence in Israel, 1993 to 2012. Euro Surveill. 2015;20:3-10. doi: 10.2807/1560-7917.es2015.20.7.21040.
- 11. Estripeaut D, Contreras R, Tinajeros O, Castrejón MM, Shafi F, Ortega-Barria E et al. Impact of Hepatitis A vaccination with a two-dose schedule in Panama: Results of epidemiological surveillance and time trend analysis. Vaccine. 2015;33:3200-7. doi: 10.1016/j.vaccine.2015.04.100.
- 12. Erhart LM, Ernst KC. The changing epidemiology of hepatitis A in Arizona following intensive immunization programs (1988-2007). Vaccine. 2012;30:6103-10. doi: 10.1016/j.vaccine.2012.07.029.
- 13. Wang H, Gao P, Chen W, Bai S, Lv M, Ji W et al. Changing epidemiological characteristics of Hepatitis A and warning of Anti-HAV immunity in Beijing, China: a comparison of prevalence from 1990 to 2017. Hum Vaccin Immunother. 2019;15:420-5. doi: 10.1080/21645515.2018.1529128.
- 14. Espul C, Cuello H, Lo Castro I, Bravo C, Thollot Y, Voznica J et al. Statistical modeling alongside observational data predicts long-term immunogenicity of one dose and two doses of pediatric hepatitis A vaccine in the Mendoza province of Argentina. Vaccine. 2020;38:1715-22. doi: 10.1016/j.vaccine.2019.12.049.
- 15. Wang Y, Qi Y, Xu W, Hu Y, Wang L, Yu Y et al. Immunogenicity persistence in children of hepatitis A vaccines Healive® and Havrix®: 11 years follow-up and long-term prediction. Hum Vaccin Immunother. 2020;16:2559-64. doi: 10.1080/21645515.2020.1715687.
- 16. Ramaswamy M, Bruden D, Nolen LD, Mosites E, Snowball M, Nelson NP et al. Hepatitis A vaccine immunogenicity 25 years after vaccination in Alaska. J Med Virol. 2021;93:3991-4. doi: 10.1002/jmv.26327.
- 17. López EL, Contrini MM, Mistchenko A, Kieffer A, Baggaley RF, Di Tanna GL et al. Modeling the long-term persistence of hepatitis A antibody after a two-dose vaccination schedule in Argentinean children. Pediatr Infect Dis J. 2015;34:417-25. doi: 10.1097/inf.00000000000605.
- 18. Dagan R, Ashkenazi S, Livni G, Go O, Bagchi P, Sarnecki M. Long-term Serologic Follow-up of Children Vaccinated with a Pediatric Formulation of Virosomal Hepatitis A Vaccine Administered With Routine Childhood Vaccines at 12-15 Months of Age. Pediatr Infect Dis J. 2016;35:e220-8. doi: 10.1097/inf.00000000001176.

- 19. Spradling PR, Bulkow LR, Negus SE, Homan C, Bruce MG, McMahon BJ. Persistence of seropositivity among persons vaccinated for hepatitis A during infancy by maternal antibody status: 15-year follow-up. Hepatology. 2016;63:703-11. doi: 10.1002/hep.28375.
- 20. Mosites E, Gounder P, Snowball M, Morris J, Spradling P, Nelson N et al. Hepatitis A vaccine immune response 22 years after vaccination. J Med Virol. 2018;90:1418-22. doi: 10.1002/jmv.25197.
- 21. Fiore AE, Wasley A, Bell BP. Prevention of hepatitis A through active or passive immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2006;55:1-23.
- 22. Demicheli V, Tiberti D. The effectiveness and safety of hepatitis A vaccine: a systematic review. Vaccine. 2003;21:2242-5. doi: 10.1016/s0264-410x(03)00135-x.
- 23. Black S, Shinefield H, Hansen J, Lewis E, Su L, Coplan P. A post-licensure evaluation of the safety of inactivated hepatitis A vaccine (VAQTA, Merck) in children and adults. Vaccine. 2004;22:766-72. doi: 10.1016/j.vaccine.2003.08.034.
- 24. Beran J, Van Der Meeren O, Leyssen M, D'Silva P. Immunity to hepatitis A and B persists for at least 15 years after immunisation of adolescents with a combined hepatitis A and B vaccine. Vaccine. 2016;34:2686-91. doi: 10.1016/j.vaccine.2016.04.033.
- 25. Shi N, Rasuli A, Thollot Y. Safety of two doses of an inactivated hepatitis a vaccine given 6 months apart in healthy toddlers, children, and adolescents aged 12 months to 15 years in China: a phase IV study. Hum Vaccin Immunother. 2019;15:748-54. doi: 10.1080/21645515.2018.1539600.
- 26. Xiaojin S, Rodewald LE, Guomin Z, Hui Z, Ning M, Fuzhen W et al. Long-term seropositivity, safety, and impact of inactivated and live, attenuated hepatitis a vaccines in China A cross-sectional study. Vaccine. 2020;38:8302-9. doi: 10.1016/j.vaccine.2020.11.019.
- 27. Suwantika AA, Yegenoglu S, Riewpaiboon A, Tu HA, Postma MJ. Economic evaluations of hepatitis A vaccination in middle-income countries. Expert Rev Vaccines. 2013;12:1479-94. doi: 10.1586/14760584.2013.851008.
- 28. Samara KA, Barqawi HJ, Aboelsoud BH, AlZaabi MA, Alraddawi FT, Mannaa AA. Hepatitis A virus knowledge and immunization attitudes and practices in the United Arab Emirates community. Sci Rep. 2021;11:2651. doi: 10.1038/s41598-020-80089-4.
- 29. Poulos RG, Ferson MJ, Orr KJ, McCarthy MA, Botham SJ, Stern JM et al. Vaccination against hepatitis A and B in persons subject to homelessness in inner Sydney: vaccine acceptance, completion rates and immunogenicity. Aust N Z J Public Health. 2010;34:130-5. doi: 10.1111/j.1753-6405.2010.00496.x.
- 30. Mayorga Pérez O, Herzog C, Zellmeyer M, Loáisiga A, Frösner G, Egger M. Efficacy of virosome hepatitis A vaccine in young children in Nicaragua: randomized placebo-controlled trial. J Infect Dis. 2003;188:671-7. doi: 10.1086/377309.
- 31. Zhao YL, Meng ZD, Xu ZY, Guo JJ, Chai SA, Duo CG et al. H2 strain attenuated live hepatitis A vaccines:protective efficacy in a hepatitis A outbreak. World J Gastroenterol. 2000;6:829-32. doi: 10.3748/wjg.v6.i6.829.
- 32. Mitra M, Shah N, Faridi M, Ghosh A, Sankaranarayanan VS, Aggarwal A et al. Long term followup study to evaluate immunogenicity and safety of a single dose of live attenuated hepatitis a vaccine in children. Hum Vaccin Immunother. 2015;11:1147-52. doi: 10.4161/21645515.2014.979646.