

ACIP COVID-19 Vaccines Work Group

COVID-19 vaccines: Work Group interpretations

Sara Oliver MD, MSPH

TOPE CONTROL AND PROVENTION

ACIP Meeting August 26, 2020

COVID-19 vaccines in human clinical trials

COVID-19 vaccines in human clinical trials – United States*

Candidate	Manufacturer	Туре	Phase	Trial characteristics	Trial #s
mRNA-1273	Moderna TX, Inc.	mRNA	III	 2 doses (0, 28d) IM administration 18-55, 56+ years 	NCT04283461 (II) NCT04405076 (II) NCT04470427 (III)
mRNA-BNT162	Pfizer, Inc./BioNTech	mRNA	1/11/111	Single or 2 dosesIM administration18-85 years	NCT04368728 EudraCT 2020-001038-36 ChiCTR2000034825
INO-4800	Inovio Pharmaceuticals, Inc.	DNA plasmid	1/11	 2 doses (0, 4w) SC administration/ electroporation ≥18 years 	NCT04336410 (I) NCT04447781
Ad26COVS1	Janssen Pharmaceutical Companies	Non- Replicating Viral Vector	1/11	2 doses (0,56d)IM administration18-55, 65+	NCT04436276

COVID-19 vaccines in human clinical trials – outside United States* mRNA/DNA vaccines

Candidate	Manufacturer	Туре	Trial Location	Phase	Trial #
CVnCoV	CureVac	mRNA	Belgium, Germany	1/11	NCT04449276, NCT04515147
	People's Liberation Army Acad. Med. Sciences	mRNA	China	1	ChiCTR2000034112
	Arcturus/Duke-NUS	mRNA	Singapore	1/11	NCT04480957
LNP- nCoVsaRNA	Imperial College London	saRNA	U.K.	1	ISRCTN17072692
GX-19	Genexine Consortium	DNA	South Korea	1/11	NCT04445389
	Osaka University/AnGes	DNA plasmid+adjuvant	Japan	1/11	NCT04463472
	Cadila Healthcare Limited	DNA plasmid	India	1/11	CTRI/2020/07/026352

^{*}As of August 22, 2020. Trials listed as actively recruiting on clinicaltrials.gov Sources: https://milkeninstitute.org/covid-19-tracker; https://www.who.int/who-documents-detail/draft-landscape-of-covid-19-candidate-vaccines; https://wac-lshtm.shinyapps.io/ncov vaccine landscape/

COVID-19 vaccines in human clinical trials – outside United States* Protein subunit vaccines

Candidate	Manufacturer	Туре	Trial Location	Phase	Trial #
NVX- CoV2373	Novavax	Protein subunit	Australia	1/11	NCT04368988
	Anhui Zhifei Longcom/ Chinese Academy of Science	Protein subunit	China	Ш	NCT04445194, NCT04466085
SCB-2019	Clover/GSK/Dynavax	Protein subunit	Australia	1	NCT04405908
Covax-19	Vaxine	Protein subunit	Australia	1	NCT04453852
	University of Queensland/CSL/Seqirus	Protein subunit	Australia	1	ACTRN12620000674932p
	Instituto Finlay de Vacunas	Protein subunit	Cuba	1/11	RPCEC00000332

COVID-19 vaccines in human clinical trials – outside United States* Viral Vector vaccines

Candidate	Manufacturer	Туре	Trial Location	Phase	Trial #
	Medicago	VLP	Canada	1	NCT04450004
ad5-nCov	CanSino Biologics, Inc.	Viral vector (NR)	China	*	NCT04313127, NCT04398147, NCT04341389
AZD1222	University of Oxford/AstraZeneca consortium	Viral vector (NR)	UK, South Africa, Brazil	11/111	NCT04324606, NCT04400838 EudraCT 2020-001072-15, EudraCT 2020-001228-32
aAPC	Shenzhen Geno-Immune Medical Institute	Viral vector	China	I	NCT04299724
LV-SMENP-DC	Shenzhen Geno-Immune Medical Institute	Viral vector	China	1	NCT04276896
Ad26COVS1	Janssen	Viral Vector (NR)	Belgium	1/11	NCT04436276, NCT04505722
Gam-COVID- Vac	Gamaleya Research Institute	Viral vector (NR)	Russia	1	NCT04437875, NCT04436471
	Institut Pasteur/ Themis/ University of Pittsburgh CVR/ Merck Sharp & Dohme	Viral vector	France, Belgium	1	NCT04497298

^{*}As of August 22, 2020. Trials listed as actively recruiting on clinicaltrials.gov Sources: https://milkeninstitute.org/covid-19-tracker; https://www.who.int/who-documents-detail/draft-landscape-of-covid-19-candidate-vaccines; https://wac-lshtm.shinyapps.io/ncov vaccine landscape/

COVID-19 vaccines in human clinical trials – outside United States* Inactivated vaccines

Candidate	Manufacturer	Туре	Trial Location	Phase	Trial #
BBIBP-CorV	Beijing Institute of Biological Products/Sinopharm	Inactivated	China	III	ChiCTR2000032459 ChiCTR2000034780
	Wuhan Institute of Biological Products/Sinopharm	Inactivated	China, UAE	Ш	ChiCTR2000031809 ChiCTR2000034780
CoronaVac	Sinovac/Instituto Butantan	Inactivated	China, Brazil	III	NCT04352608, NCT04383574, NCT04456595
	Inst. of Med. Biology/Chinese Acad. Med. Sciences	Inactivated	China	Ш	NCT04412538, NCT04470609
BBV152	Bharat Biotech	Inactivated	India	1/11	CTRI/2020/07/026300, NCT04471519

^{*}As of August 22, 2020. Trials listed as actively recruiting on clinicaltrials.gov Sources: https://milkeninstitute.org/covid-19-tracker; https://www.who.int/who-documents-detail/draft-landscape-of-covid-19-candidate-vaccines; https://wac-lshtm.shinyapps.io/ncov vaccine landscape/

Work Group Interpretation: Clinical Trial Data

Information Reviewed by Work Group

Phase I Immunogenicity data from 2 COVID-19 mRNA vaccines

- Phase I Safety data from 2 COVID-19 mRNA vaccines
- Overview/Plans for Phase II/III studies for 2 COVID-19 mRNA vaccines

Immunogenicity and Safety Information Reviewed by Work Group mRNA1273 (Moderna) N=130

Immunogenicity

- Neutralizing antibodies (pseudovirus neutralization assay titers) and binding antibodies (ELISA) measured 7 days post-dose 2
- Responses similar to or exceeded convalescent sera comparison
- Th1-biased CD4+ T-cell response
- 100μg dose selected for Phase III clinical trials

Safety

- Local and systemic symptoms followed for 7 days post-vaccination
 - Pain, myalgia, fatigue most common symptoms reported
- Reactogenicity symptoms higher after second dose
- No vaccine-related serious adverse events (SAEs) reported

Immunogenicity and Safety Information Reviewed by Work Group BNT162b2 (Pfizer/BioNTech) N=195

Immunogenicity

- Neutralizing antibodies (50% neutralization titers) measured 7 days post-dose 2
- Responses similar to or exceeded human convalescent panel
- CD4+ and CD8+ T cell response demonstrated
- Th1-biased CD4+ T-cell response
- 30μg dose of BNT162b2 selected for Phase III clinical trials

Safety

- Local and systemic symptoms followed after administration
 - Fatigue, headache and muscle pain most common
- Reactogenicity symptoms lower in older population (65-85 years)

Plans for Phase III

- Both vaccine candidates currently enrolling large (~30,000 people) Phase III efficacy trials
- Primary endpoints: symptomatic, virologically confirmed COVID-19 disease
- Attempting to enroll diverse populations:
 - Race and ethnicity
 - Age (<65 years and ≥65 years of age)</p>
 - Underlying medical conditions

Work Group Interpretation

- Phase I data from both mRNA vaccines show induction of neutralizing antibodies at 7 days post-dose 2 that exceed levels in convalescent sera
- Data from both mRNA vaccines support advancing to large scale Phase III clinical trials to assess safety and efficacy
- Diverse cold-chain or ultra-low temperature requirements can substantially affect implementation efforts

Work Group Interpretation: Current Phase III Clinical Trials

- Emphasized the importance of enrolling diverse study participants
- Emphasized the need to allow for sufficient time post-dose 2 to evaluate safety signals
- Need to report maternal and fetal outcomes for women who become pregnant during the clinical trials
- Evaluate vaccine impact on viral shedding or transmission, among symptomatic and asymptomatic populations

Work Group Interpretation: Current Phase III Clinical Trials

- Emphasized the importance of enrolling diverse study participants
- Emphasized the need to allow for sufficient time post-dose 2 to evaluate safety signals
- Need to report maternal and fetal outcomes for women who become pregnant during the clinical trials
- Evaluate vaccine impact on viral shedding or transmission, among symptomatic and asymptomatic populations
 - Co-administration of other vaccines especially influenza vaccine
 - Pregnant women
 - Children

Work Group Interpretation: Future/Additional Studies

Work Group Interpretation: Epidemiology Data

Information Reviewed by Work Group

COVID-19 epidemiology among U.S. population

- Epidemiology among various occupational settings
- Epidemiology among individuals at increased risk of severe COVID-19 disease

Healthcare Personnel

• Healthcare Personnel (HCP) are essential workers defined as paid and unpaid persons serving in healthcare settings who have the potential for direct or indirect exposure to patients or infectious materials

Healthcare Personnel within COVID-NET

March 1 to July 11, 2020

- Healthcare Personnel Type: N=512
 - Respiratory Therapist: 3 (<1%)
 - Physician: 23 (5%)
 - Nurse: 125 (24%)
 - Other: 276 (54%)
 - Not specified: 85 (17%)

Hospital-based patient care support (e.g. nursing assistant)	73
Other patient care	21
Housekeeping/Environmental Services	20
Other nursing home/LTCF staff	17
Technicians	15
Management	12
Home health worker	12
Emergency medical personnel	10
Social work/counselor	10
Pharmacy	9
Food Services	8
Dentistry	6
Laboratory	6
Other	57

Long Term Care Facility Workforce

- Disproportionately lower-wage workers
- **39**% of workers are 50 years of age or older
- 82% of workers are female, 26% non-Hispanic Black persons
- Staff can be shared among multiple facilities
- In many instances, COVID-19 activity increases among LTCF staff first, and then residents

Cases among Staff at Skilled Nursing Facilities

Count and Incidence per 1,000 Resident Weeks

Workers in Food Processing and Agriculture

- Among 14 states reporting total number of workers in affected meat and poultry processing plants from April–May 2020, COVID-19 diagnosed in 9.1% of workers
 - Among cases with race and ethnicity reported, 87% occurred among racial or ethnic minorities
- Outbreaks have been reported in many food production/agriculture sectors
 - Multiple factors that increase workers' risk for exposure to SARS-CoV-2:
 - Prolonged close workplace contact with coworkers
 - Shared transportation and/or congregate housing
 - Lack of paid sick leave

Workers in Correction and Detention Facilities

- Correction and detention staff members can introduce the virus through their daily movements between the facility and the community
- In an analysis of 16 U.S. prisons and jails, more than half of the facilities identified their first case of COVID-19 among staff members¹

Adults with increased risk for severe COVID-19 disease

- Accounting for presence of individual underlying medical conditions, higher hospitalization rates were observed among adults ≥65 years
- Higher hospitalization rates observed for adults with underlying medical conditions, after accounting for age, race and ethnicity, and sex
 - Obesity
 - Chronic kidney disease
 - Diabetes
 - Hypertension

Work Group Interpretation-- Modeling

Population model

- Similar number of infections prevented by vaccinating HCP, essential workers and adults with underlying medical conditions
- Vaccinating older adults resulted in more modest declines in infections and larger declines in deaths compared to other groups
- Differences in impact between vaccinating different groups was small

Nursing Home model

More infections and deaths prevented by vaccinating HCP compared to vaccinating NH residents

The more infection we prevent now, the more impact the vaccine will have

Work Group Interpretation

- Many occupations (e.g. "essential workers") at increased risk of COVID-19 disease
 - Important to consider individuals unable to socially distance or work from home
- Older adults and adults with underlying medical conditions also at increased risk of COVID-19 disease
 - Many essential workers also older or have an underlying medical conditions
- In many instances, cases increase first among staff in congregate settings (e.g. LTCF or correctional facilities)
 - Possible that some protection could be provided to these vulnerable populations by immunity among staff/workers

For more information, contact CDC 1-800-CDC-INFO (232-4636)
TTY: 1-888-232-6348 www.cdc.gov

Thank you

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

