Status of vaccine research and development of vaccines for *Staphylococcus aureus*\(^\ddagger\)

Birgitte K. Giersing\(^a,\ast\), Sana S. Dastgheyb\(^b\), Kayvon Modjarrad\(^c\), Vasee Moorthy\(^a\)

\(^a\) Initiative for Vaccine Research, World Health Organization, CH-1211 Geneva 27, Switzerland
\(^b\) Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
\(^c\) Walter Reed Army Institute of Research, Bethesda, USA

A B S T R A C T

Staphylococcus aureus is a highly versatile gram positive bacterium that is resident as an asymptomatic colonizer on the skin and in the nasopharynx of approximately 30% of individuals. Nasopharyngeal colonization is a risk for acquiring *S. aureus* infections, which can cause a range of clinical symptoms that are commonly associated with skin and soft-tissue infections. The emergence of *S. aureus* strains that are highly resistant to antimicrobials has recently become a major public health concern. In low-income countries the incidence of *S. aureus* disease is highest in neonates and children up to one year of age and mortality rates are estimated to be up to 50%. In the United States, *S. aureus* infection accounts for approximately 300,000 hospitalizations per year. A vaccine against multi-drug resistant *S. aureus*, therefore, is urgently needed. Two vaccine candidates have previously been evaluated in late-stage clinical trials but have not demonstrated efficacy. At present, one vaccine candidate and two monoclonal antibody are undergoing clinical evaluation in target groups at high risk for *S. aureus* infection. This review provides an overview of current vaccine development efforts and presents the major technical and regulatory challenges to developing a licensed *S. aureus* vaccine.

© 2016 World Health Organization; licensee Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

1. About the disease and pathogen

Staphylococcus aureus is a bacterium that is both an asymptomatic colonizer and frequent cause of disease in humans [1]. It is a highly versatile pathogen that causes a range of clinical manifestations of varying severity, and is the most commonly isolated pathogen in the setting of skin and soft-tissue infections, septic arthritis, pneumonia, endovascular infections, osteomyelitis, foreign-body associated infections, septicemia and toxic shock syndrome [2]. *S. aureus* infections strike people of all ages and backgrounds, but are most severe in young children, the elderly, the immunosuppressed and other individuals with major comorbidities [3,4]. The incidence of *S. aureus* infection in low income countries is highest in neonates and children up to one year of age with mortality rates of up to 50% [5], in contrast to high income countries where the disease appears to increase with age, or is most prevalent at the extremes of the age spectrum. However, there have been very few epidemiological studies in low and middle income countries, and it is likely that there is an under-reporting of *S. aureus*-associated disease generally, and particularly in the elderly in these settings [6,7].

S. aureus is known to be highly adaptable, and in recent history has shown a remarkable epidemiologic transition. Since 1959, when methicillin was first introduced, strains of methicillin-resistant *S. aureus* (MRSA) have been documented at a rapid and increasing rate. Hospital-associated MRSA (HA-MRSA) clones are now recognized to be the leading cause of nosocomial infections in low-, middle-, and high-income countries [5,8,9]. The emergence of community-associated MRSA (CA-MRSA) in the past several decades has also become a point of concern, as virulent strains of CA-MRSA are fast-spreading and can affect seemingly healthy individuals [10]. Vancomycin is currently the first-line treatment for severe CA-MRSA and HA-MRSA infections; however strains with reduced susceptibility to this antimicrobial (vancomycin-intermediate *S. aureus* (VISA) and vancomycin-resistant *S. aureus* (VRSA)) have been reported with increasing frequency [11]. Since

\(^\ddagger\) This is an Open Access article published under the CC BY 3.0 IGO license which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In any use of this article, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. This notice should be preserved along with the article’s original URL.

\(^\ast\) Corresponding author at: World Health Organization, Initiative for Vaccine Research, 20 Avenue Appia, CH-1211 Geneva 27, Switzerland. Tel.: +41 22 791 2816.

E-mail address: giersingb@who.int (B.K. Giersing).

http://dx.doi.org/10.1016/j.vaccine.2016.03.110
0264-410X/© 2016 World Health Organization; licensee Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
nasal carriage is a well-defined risk factor for infection, decoloni-
sation protocols have had some moderate success in reducing the
incidence of infection in specific hospitalized groups. However,
clearance is not consistent or long-lived, and this strategy is not
applicable to community settings. Efforts to prevent MRSA infec-
tion in high-income countries are well-resourced, but risk factors
and infection are poorly monitored in low- and middle-income
settings, where in some cases the counter MRSA antibiotics are
available and frequently self-administered [12]. MRSA’s status as
a global public health threat will only be exacerbated by inappro-
riate anti-microbial use and will further accelerate the spread of
CA-MRSA and other resistant microorganisms.

S. aureus, which constitutes the normal flora in up to 30% of
individuals (either persistently or intermittently), is typically
spread via close contact from carriers to non-carriers. Transmis-
sion has been found to be most efficient within healthcare and
athletic facilities [2,13]. In high income countries, target groups
for potential S. aureus vaccination would be at-risk healthcare work-
ers, the elderly ≥65 years, and the immunocompromised, as well
as patients with recurrent invasive staphylococcal infection [3,14].
The global burden and spread of S. aureus infection is currently
unknown and more data from low- and middle-income countries
are needed, but in the US alone, S. aureus infection is reported as
a discharge diagnosis for around 300,000 hospital stays per year.
S. aureus infection is also associated with a five-fold increased risk
of in-hospital death and three-fold higher cost of hospital stay
compared to inpatients without infection [15]. A US study in 2003
estimated that S. aureus infections accounted for $14.5 billion in all
inpatient hospital stays and $12.3 billion for surgical stays [16].

2. Overview of current efforts

A. Either vaccines currently available and their limitations or bio-
logical feasibility for vaccine development

Prior S. aureus infection does not provide protection against
subsequent infection, but infections among carriers are less
severe, suggesting that some form of immunity does develop
during prolonged colonization. Although all adults have pre-
exisiting binding antibodies to S. aureus antigens, including
capsule and clumping factor A (CfA), these do not typically
include functional antibodies that have opsonophagocytic or
neutralizing properties, and therefore do not provide protection
against infection.

There is precedence for the development of safe and effective
bacterial vaccines that target single antigens or toxins, partic-
cularly capsular polysaccharides. The most prominent examples
are the tetanus toxoid and pneumococcal conjugate vaccines.
Application of these technologies to S. aureus is complicated by
the bacterium’s complex mechanisms of pathogenesis. S.
aureus can comprise the normal human flora and, as such, has
evolved a number of strategies to colonize and evade the host
immunity, including polymorphic expression of surface anti-
gen and release of multiple redundant virulence factors [17,18].
These include iron acquisition factors such as IsdB, manganese
take receptors such as MntABC, fibronectin binding proteins
(CfA, CfB), polysaccharide capsule molecules (CP5 and CP8)
and toxic shock syndrome toxin (TSST). To date, vaccine can-
didates have targeted individual cell surface components, such
as the polysaccharide capsule, extracellular polysaccharides or
cell wall associated proteins that aid attachment, invasion or
act as a receptor (e.g., hemoglobin for iron utilization). Although
multiple vaccine candidates have shown promise through pre-
clinical development in a range of animal models, those that have
reached late stage clinical testing have failed to demonstrate
efficacy in human trials [19,29].

B. General approaches to vaccine development for this disease for
low and middle income country markets

S. aureus has not been viewed as a high-priority pathogen in
low-income countries. However, based on the limited data avail-
able, the incidence and mortality from multidrug-resistant S.
aureus in these regions is likely significant. To date, only two
vaccines have completed human efficacy, and neither have con-
templated target populations or indications that are prevalent
in low- and middle-income countries [20]. StaphVAX is a hiva-
lent polysaccharide- and protein-conjugated vaccine, directed
against S. aureus capsular polysaccharide types 5 and 8 (CP5
and CP8), which are associated with approximately 80% of S.
aureus clinical infections. The candidate was evaluated in two
phase III studies to prevent bacteremia in end-stage renal dialysis
patients in the 3–54 weeks following immunization. In the first
40 weeks, bacteremia was reduced by 57% but efficacy dropped
to 26% by week 54 [21]. A confirmatory Phase III study involving
3600 hemodialysis patients who were evaluated for bacteremia
showed no difference between vaccinated individuals and the
placebo controls. The functional antibody titers induced by the
vaccine in this second follow-up phase III study have not yet been
made publicly available. Currently, then, the main reason for the
second trial’s failure is being attributed to manufacturing incon-
sistencies between different vaccine lots used for the two studies
[22]. Development of the candidate has been discontinued.

Another candidate, V710, elicits immunity against the cell-
wall anchored iron scavenger protein IsdB, and was evaluated in
a Phase III randomized controlled trial in approximately
8000 adults scheduled for cardiac surgery. This trial was termi-
nated when an interim analysis showed a statistically significant
increase in mortality rate due to S. aureus infection and a signifi-
cantly higher rate of other adverse events [23].

Passive immunization strategies utilizing both polyclonal and
monoclonal antibodies (mAbs) have been targeted for those who
are immunocompromised and cannot mount an independent,
robust immune response and for those at immediate risk of
infection and do not have time to for an active immunization to
take effect. Five antibody candidates have been developed and
evaluated in late stage clinical studies; none have demonstrated
efficacy [24].

The focus has been on development of a prophylactic product
that will protect against life-threatening S. aureus infections, but
it is hoped that such a vaccine would also protect against all
S. aureus infections including more commonly encountered skin
and soft tissue infections. To date, however, no product has been
shown to protect against any tested outcome.

3. Technical and regulatory assessment

Active and passive immunization approaches have been based on
increasing the concentration of opsonic antibodies to single
surface antigens, and all have failed to demonstrate protection.
Antigenic variation and the multiple invasion and colonization
mechanisms of S. aureus, absence of representative preclinical
models and lack of immune correlates or surrogates of protec-
tion all present significant obstacles to the rational design,
development and evaluation of potentially successful vaccine
candidates.

Leaders in the field have been speculating about the future
directions for S. aureus vaccine development, particularly in the
aftermath of the failed efficacy trials [25–28]. First and foremost,
a multi-antigen approach that targets both cell surface compo-
ents and secreted virulence factors, and potentially responses
against the disease causing toxins, have been hypothesized as
essential to the success of a vaccine. Because S. aureus causes
a broad range of diseases, preclinical testing should involve the use of multiple models that approximate the different diseases that the pathogen causes in humans. Many candidates have been evaluated in murine models, due to convenience and low cost, and have demonstrated proof-of-concept in terms of preclinical protection through the elicitation of opsonic antibodies. However, these data have not translated into human efficacy [19,29]. In addition to developing a number of representative preclinical models, it is also important to evaluate protection against diverse S. aureus clinical isolates, and to assess development of in vitro assays that measure functional responses through the induction of both humoral and T-cell mediated responses, particularly toxin neutralization, opsonophagocytic killing by neutrophils, and IL-17 secretion.

The optimal population for clinical proof-of-concept or efficacy studies is challenging to identify. Generally speaking, the more immune compromised the patient, the greater the severity of S. aureus infection. However, these individuals are less likely to mount an effective immune response after vaccination. Patient groups who are generally healthy but elect to undergo surgery or some other invasive procedure are typical target populations for efficacy studies, as vaccination can be administered prior to a known period of increased risk (approximately 90 days) and be compared to a placebo. Regardless of the population in which vaccine proof-of-concept is demonstrated, an efficacious vaccine will ultimately be targeted to patients at who are already at high risk of infection and are not in good health at baseline (immunocompromised or with co-morbidities). Prospective studies across a number of elective surgery populations that define the risk, characteristics of surgical procedures, co-morbidities and infections rates are needed to accurately identify the optimal population in which to test S. aureus vaccines, as well as to plan how such a vaccine may be most impactful.

Recent analysis of the data from V710 vaccine recipients indicates that the combination of low pre-vaccination IL-2 levels, vaccination with V710, and post-operative S. aureus infection were associated with increased mortality following cardiothoracic surgery [30]. Nine of ten V710 recipients with undetectable preoperative IL17a levels and postoperative S. aureus infections died. Investigation into the pathophysiologic mechanism of this outcome is ongoing.

A vaccine that offers sterilizing protection from S. aureus may be an overly ambitious target, but would be ideal. The alternative to a vaccine that protects against all clinical S. aureus syndromes is to develop vaccines against each or a subset of specific clinical manifestations, however this would be very costly, and certainly challenging for use in low income countries. A more achievable end point may be reduction in the severity of infection, as this may still have a very important impact on mortality.

S. aureus vaccines could also be considered a high priority within the antimicrobial resistance (AMR) agenda together with, for example, Group A Streptococcal, P. falciparum malaria and tuberculosis vaccines. However, the AMR research agenda has not yet fully incorporated vaccine R&D perspectives. A discussion about incentivizing vaccine development to address AMR concerns is needed at national and international policy levels.

Table 1

<table>
<thead>
<tr>
<th>Candidate name/Identifier</th>
<th>Developer</th>
<th>Vaccine approach</th>
<th>Pre-clinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active prophylactic vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF-06290510/S4Ag</td>
<td>Pfizer</td>
<td>CIA/MntC/CP5/CP8 conjugated to CRM197</td>
<td>X</td>
<td></td>
<td></td>
<td>Safety and Efficacy of SAAAg Vaccine in Adults Having Elective Posterior Instrumented Lumbar Spinal Fusion Procedure (STRIVE): NCT01827358</td>
</tr>
<tr>
<td>GSK2392103A</td>
<td>GSK</td>
<td>CP5/CP8/TT/AT/ClfA plus AS03B</td>
<td></td>
<td>X</td>
<td></td>
<td>SAAAg Safety, Tolerability, and Immunogenicity Study in Japanese Adults: NCT02492958</td>
</tr>
<tr>
<td>Glycosylated CP5, CP8, and HLA1351</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA75</td>
<td>Vaccine Research International</td>
<td>Whole cell vaccine</td>
<td></td>
<td>X</td>
<td></td>
<td>No longer under active development http://www.vri.org.uk/PhaseITrial.pdf</td>
</tr>
<tr>
<td>4C-Staph</td>
<td>Novartis</td>
<td>FliC2, EsxA, Hla, Sur-2</td>
<td></td>
<td>X</td>
<td></td>
<td>[35]</td>
</tr>
<tr>
<td>SAG</td>
<td>Pan Chai University</td>
<td>S. aureus ghosts</td>
<td>X</td>
<td></td>
<td></td>
<td>[36]</td>
</tr>
<tr>
<td>Passive prophylactic immunization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDI4893</td>
<td>Medimmune</td>
<td>mAb binding to S. aureus toxin</td>
<td>X</td>
<td></td>
<td></td>
<td>Dose-ranging efficacy and safety in mechanically Ventilated Adults: NCT02296320</td>
</tr>
<tr>
<td>AR-301</td>
<td>Aridis</td>
<td>mAb</td>
<td></td>
<td>X</td>
<td></td>
<td>Phase II Safety, Pharmacokinetics and Efficacy of KRSA301 in Severe Pneumonia (S. aureus) as an adjunctive therapy to standard of care antibiotics in hospital-acquired pneumonia (HAP) and ventilator associated pneumonia (VAP) patients: NCT01589185</td>
</tr>
</tbody>
</table>
4. Status of vaccine R&D activities

Following the failure of single antigen vaccine approaches, most development efforts are now focused on multiple antigen approaches. Pfizer’s SA4Ag candidate is currently the most advanced and is comprised of four antigens: the adhesion molecule ClfA, the manganese transporter MntC and anti-phagocytic capsular polysaccharides 5 and 8 [31]. This combination is designed to elicit broad humoral and cellular immune responses against multiple virulence mechanisms involved in the establishment and maintenance of infection. Results from a phase I study in which healthy adults of ages 50–85 (n = 312) or 18–24 (n = 96) years randomly received a one of three dosages of SA4Ag as a single intramuscular injection or placebo showed that the 50- to 85-year age stratum elicited robust immune responses to all component antigens, as well as functional responses as measured by an opsonophagocytosis assay. The rise in functional antibody titers against S. aureus was maintained through at least 12 months. A phase IIb placebo-controlled safety and efficacy study in adults undergoing elective spinal fusion surgery is underway (referred to as STRIVE: STaphylococcus aureus SuRgical Inpaint Vaccine Efficacy). SA4Ag was granted Fast Track designation by the U.S. Food and Drug Administration (FDA) in February 2014.

Other multi-antigen preclinical candidates targeting conserved capsular polysaccharide conjugates and/or protein antigens, some including toxins such as alpha toxin, TSST, and SEB are in development (Table 1). In the face of past failures, current efforts are also focused on further characterizing the immunopathology and immunity of S. aureus infections to identify new antigenic targets, and developing more representative preclinical [32] models in which opsonising and/or neutralizing immune responses are measured.

Passive immunization with mAbs is an alternative strategy to manage S. aureus infection in the context of increasing antimicrobial resistance. Questions about affordability and access of mAb interventions for low- and middle-income countries need to be clarified. As with previous vaccine candidates, clinical trials examining the efficacy of human antibodies have failed to meet their study end points and have been discontinued [19,29]. A new generation of mAbs is now undergoing clinical evaluation. Aridis Pharmaceuticals’ candidate AR-301 (Salvecin™) is a fully human monoclonal IgG1 antibody targeting S. aureus alpha-toxin that is undergoing evaluation as an adjunctive therapy to standard-of-care antibiotic treatment for hospital-acquired pneumonia (HAP) and ventilator associated pneumonia (VAP) [38]. Medimmune’s MEDI4893 long half-life mAb is also targeting the alpha toxin, and is currently in a Phase 2 dose-ranging study to evaluate safety and efficacy in mechanically ventilated adult subjects [39].

5. Likelihood for financing

The relatively well-characterized incidence of S. aureus in high-income countries and the market potential for a vaccine has meant that development, particularly through late-stage clinical testing, has to date been advanced by pharmaceutical companies. Basic research into S. aureus pathogenesis, development of improved preclinical models and functional assays is being supported by government funding agencies such as the European Commission and the National Institutes of Health. However, there are no efforts to develop a vaccine against S. aureus infections in low- and middle-income countries as no market has yet been established there.

Acknowledgements

The authors would like to thank Dr. Lanling Zhou, Chief, Translational Sciences Section, Bacteriology and Mycology Branch, National Institutes of Health for review of this manuscript.

Conflict of interest: None declared.

References

